The serum and glucocorticoid-regulated kinase (SGK) family has been implicated in the regulation of many cellular processes downstream of the PI3K pathway. It plays a crucial role in PI3K-mediated tumorigenesis, making it a potential therapeutic target for cancer. SGK family consists of three isoforms (SGK1, SGK2, and SGK3), which have high sequence homology in the kinase domain and similar substrate specificity with the AKT family. In order to identify novel compounds capable of inhibiting SGK3 activity, a high-throughput screening campaign against 50,400 small molecules was conducted using a fluorescence-based kinase assay that has a Z' factor above 0.5. It identified 15 hits (including nitrogen-containing aromatic, flavone, hydrazone, and naphthalene derivatives) with IC values in the low micromolar to sub-micromolar range. Four compounds with a similar scaffold (i.e., a hydrazone core) were selected for structural modification and 18 derivatives were synthesized. Molecular modeling was then used to investigate the structure-activity relationship (SAR) and potential protein-ligand interactions. As a result, a series of SGK inhibitors that are active against both SGK1 and SGK3 were developed and important functional groups that control their inhibitory activity identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289383PMC
http://dx.doi.org/10.1038/s41401-018-0087-6DOI Listing

Publication Analysis

Top Keywords

sgk family
8
identification structure
4
structure modification
4
modification characterization
4
characterization potential
4
potential small-molecule
4
sgk3
4
small-molecule sgk3
4
sgk3 inhibitors
4
inhibitors novel
4

Similar Publications

Background: According to the stem cell hypothesis, breast carcinogenesis may be related to the breast stem cell pool size. However, little is known about associations of breast cancer risk factors, such as anthropometric measures, with the expression of stem cell markers in noncancerous breast tissue.

Methods: The analysis included 414 women with biopsy-confirmed benign breast disease in the Nurses' Health Study and Nurses' Health Study II.

View Article and Find Full Text PDF

The mTORC2 signaling network: targets and cross-talks.

Biochem J

January 2024

Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, U.S.A.

The mechanistic target of rapamycin, mTOR, controls cell metabolism in response to growth signals and stress stimuli. The cellular functions of mTOR are mediated by two distinct protein complexes, mTOR complex 1 (mTORC1) and mTORC2. Rapamycin and its analogs are currently used in the clinic to treat a variety of diseases and have been instrumental in delineating the functions of its direct target, mTORC1.

View Article and Find Full Text PDF

Microbial consortium and impact of industrial mining on the Natural High Background Radiation Area (NHBRA), India - Characteristic role of primordial radionuclides in influencing the community structure and extremophiles pattern.

Environ Res

March 2024

Unit of Research in Radiation Biology & Environmental Radioactivity (URRBER), P.G & Research Department of Zoology, The New College (Autonomous), Affiliated to University of Madras, Chennai, Tamil Nadu, 600 014, India; Institute for Environment and Development (LESTARI), Research Centre for Sustainability Science and Governance (SGK), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia. Electronic address:

The present investigation is the first of its kind which aims to study the characteristics of microbial consortium inhabiting one of the natural high background radiation areas of the world, Chavara Coast in Kerala, India. The composition of the microbial community and their structural changes were evaluated under the natural circumstances with exorbitant presence of radionuclides in the sediments and after the radionuclide's recession due to mining effects. For this purpose, the concentration of radionuclides, heavy metals, net radioactivity estimation via gross alpha and beta emitters and other physiochemical characteristics were assessed in the sediments throughout the estuarine stretch.

View Article and Find Full Text PDF

Type 1 IFN expression is critical in the innate immune response, but aberrant expression is associated with autoimmunity and cancer. Here, we identify N-[4-(1H46 pyrazolo[3,4-b] pyrazin-6-yl)-phenyl]-sulfonamide (Sanofi-14h), a compound with preference for inhibition of the AGC family kinase SGK3, as an inhibitor of Ifnb1 gene expression in response to STING stimulation of macrophages. Sanofi-14h abrogated SGK activity and also impaired activation of the critical TBK1/IRF3 pathway downstream of STING activation, blocking interaction of STING with TBK1.

View Article and Find Full Text PDF

The protein kinase PDK1 phosphorylates at least 24 distinct substrates, all of which belong to the AGC protein kinase group. Some substrates, such as conventional PKCs, undergo phosphorylation by PDK1 during their synthesis and subsequently get activated by DAG and Calcium. On the other hand, other substrates, including members of the Akt/PKB, S6K, SGK, and RSK families, undergo phosphorylation and activation downstream of PI3-kinase signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!