AI Article Synopsis

  • The study investigates the effects of 3,4-Dihydroxybenzalacetone (DBL) and caffeic acid phenethyl ester (CAPE) on the NF-κB signaling pathway in inflammatory responses using RAW 264.7 cells.
  • CAPE was found to significantly suppress nitrite production and the activation of NF-κB target genes more effectively than DBL, especially after stimulation with LPS and interferon γ.
  • The research indicates that CAPE's inhibitory effects are linked to the modification of thiol groups and reduced phosphorylation of the NF-κB p65 protein, which plays a crucial role in inflammation.

Article Abstract

3,4-Dihydroxybenzalacetone (DBL) and caffeic acid phenethyl ester (CAPE) are both catechol-containing phenylpropanoid derivatives with various bioactivities. In the present study, we compared the effects of these compounds and other phenylpropanoid derivatives on the activation of nuclear factor-κB (NF-κB) signaling, a major pathway in the inflammatory response, using RAW 264.7 cells. Lipopolysaccharide (LPS)- and interferon γ-induced production of nitrite was strongly suppressed by CAPE and, to a lesser extent, by DBL and caffeic acid ethyl ester. Consistent with these results, induction of NF-κB downstream genes, such as Nitric oxide synthase, interleukin 1 beta, and interleukin 6, and translocation of NF-κB p65 to the nucleus were reduced after LPS stimulation, to a greater extent with CAPE than with DBL. Interestingly, the phosphorylation of p65 was reduced by both compounds, especially by CAPE, even when the level of IκB was not altered. Furthermore, the thiol groups of p65 were modified by CAPE, and the inhibitory effects of CAPE and DBL on the p65 phosphorylation and nitrite production were reversed by pretreatment with thiol-containing reagents. These results suggest that CAPE has strong inhibitory effects on the NF-κB activation that are associated with the modification of thiol groups and phosphorylation of p65.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2018.07.003DOI Listing

Publication Analysis

Top Keywords

caffeic acid
12
nuclear factor-κb
8
p65 phosphorylation
8
acid phenethyl
8
phenethyl ester
8
dbl caffeic
8
phenylpropanoid derivatives
8
cape dbl
8
phosphorylation p65
8
thiol groups
8

Similar Publications

Background: Caffeic acid (CA), a dietary compound, has been studied for its potential impact on inhibiting prostate cancer (PCa) growth. PCa is often associated with heightened expression of glyoxalase-1 (Glo-1), making it a target for potential therapeutic interventions. CA's mechanisms in suppressing Glo-1 expression and its effects on PCa cell proliferation are areas of interest for understanding its potential as an anticancer agent.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial and antioxidant activities of caffeic acid grafted ε-polylysine.

Int J Biol Macromol

December 2024

School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.

The antioxidant activity of ε-polylysine (EPL) can be enhanced by grafting phenolic compound caffeic acid (CA) onto its amino groups. To enhance the antioxidant activity of EPL, this study synthesized caffeic acid-ε-polylysine conjugate (CA-EPL) by grafting CA onto EPL using carbodiimide coupling reaction. Fourier transform infrared spectroscopy, H nuclear magnetic resonance (NMR) spectroscopy confirmed the successful conjugation of caffeic acid and ε-polylysine.

View Article and Find Full Text PDF

Traditional Chinese medicine has unique advantages in preventing and treating COVID-19, and Fuzheng Jiedu decoction (FZJDD) was reported to be effective against COVID-19 in clinical trials. To investigate the potential mechanisms and material basis of FZJDD against SARS-CoV-2, we performed SARS-CoV-2 target protein inhibition analyses and a metabolite full spectrum analysis of FZJDD. Interestingly, FZJDD was found to block the binding of SARS-CoV-2 Spike protein with the receptor ACE2 and inhibit the activity of SARS-CoV-2 3CLpro.

View Article and Find Full Text PDF

Study on the formation mechanism and effective manipulation of polymorphs and solvates in Osimertinib-Caffeic acid multi-component crystal with distinct properties.

Int J Pharm

December 2024

Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Investigating the formation mechanism and effective manipulation of multi-component crystal polymorphs is crucial for facilitating industrial drug development. Herein, five novel Osimertinib-caffeic acid forms were first strategically tailored by varying solvent selection. Theoretical analysis demonstrated this polymorphism is correlated with multiple hydrogen bond donors-acceptors within multi-component system, which provides manipulation space for reconfiguration of intermolecular interactions and structural competition, while solvent further induced or involved in hydrogen-bonded rearrangements.

View Article and Find Full Text PDF

In this work, artificial neural network coupled with multi-objective genetic algorithm (ANN-NSGA-II) has been used to develop a model and optimize the conditions for the extracting of the Mentha longifolia (L.) L. plant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!