Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Organ-on-a-chip technology provides a novel in vitro platform with a possibility of reproducing physiological functions of in vivo tissue, more accurately than conventional cell-based model systems. Many newly arising diseases result from complex interaction between multiple organs. By realizing different organ functions on a chip, organ-on-a-chip technology is a potentially useful for building models of such complex diseases. Pharmacokinetic (PK) models provide a mathematical framework for understanding the interaction between organs involving transport and reaction of molecules. Here, we discuss various forms of organ-on-a-chip devices reported so far, with a particular emphasis on multi-organ devices for recapitulating multi-organ interactions. Also, we introduce the concept of PK models, and explain how it can be used to design and analyze multi-organ chip devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mcb.2018.05.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!