A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8. | LitMetric

Although the N-terminal domain of vertebrate small heat shock proteins (sHsp) is poorly conserved, it contains a core motif preserved in many members of the sHsp family. The role of this RLFDQxFG motif remains elusive. We analyzed the specific role of the first arginine residue of this conserved octet sequence in five human sHsps (HspB1, HspB4, HspB5, HspB6, and HspB8). Substitution of this arginine with an alanine induced changes in thermal stability and/or intrinsic fluorescence of the related HspB1 and HspB8, but yielded only modest changes in the same biophysical properties of HspB4, HspB5, and HspB6 which together belong to another clade of vertebrate sHsps. Removal of the positively charged Arg side chain resulted in destabilization of the large oligomers of HspB1 and formation of smaller size oligomers of HspB5. The mutation induced only minor changes in the structure of HspB4 and HspB6. In contrast, the mutation in HspB8 was accompanied by shifting the equilibrium from dimers towards the formation of larger oligomers. We conclude that the RLFDQxFG motif plays distinct roles in the structure of several sHsp orthologs. This role correlates with the evolutionary relationship of the respective sHsps, but ultimately, it reflects the sequence context of this motif.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073470PMC
http://dx.doi.org/10.3390/ijms19072112DOI Listing

Publication Analysis

Top Keywords

rlfdqxfg motif
12
hspb4 hspb5
12
hspb5 hspb6
12
role arginine
8
n-terminal domain
8
small heat
8
heat shock
8
shock proteins
8
hspb1 hspb4
8
hspb6 hspb8
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!