The present article investigates the question of building energy monitoring systems used for data collection to estimate the Heat Loss Coefficient (HLC) with existing methods, in order to determine the Thermal Envelope Performance (TEP) of a building. The data requirements of HLC estimation methods are related to commonly used methods for fault detection, calibration, and supervision of energy monitoring systems in buildings. Based on an extended review of experimental tests to estimate the HLC undertaken since 1978, qualitative and quantitative analyses of the Monitoring and Controlling System (MCS) specifications have been carried out. The results show that no Fault Detection and Diagnosis (FDD) methods have been implemented in the reviewed literature. Furthermore, it was not possible to identify a trend of technology type used in sensors, hardware, software, and communication protocols, because a high percentage of the reviewed experimental tests do not specify the model, technical characteristics, or selection criteria of the implemented MCSs. Although most actual Building Automation Systems (BAS) may measure the required parameters, further research is still needed to ensure that these data are accurate enough to rigorously apply HLC estimation methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068572PMC
http://dx.doi.org/10.3390/s18072360DOI Listing

Publication Analysis

Top Keywords

heat loss
8
loss coefficient
8
energy monitoring
8
monitoring systems
8
hlc estimation
8
estimation methods
8
fault detection
8
experimental tests
8
methods
5
monitoring
4

Similar Publications

Solar-driven dry reforming of methane (DRM) offers a milder, more cost-effective, and promising environmentally friendly pathway compared to traditional thermal catalytic DRM. Numerous studies have extensively investigated inexpensive Ni-based catalysts for application in solar-driven DRM. However, these catalysts often suffer from activity loss due to carbon accumulation.

View Article and Find Full Text PDF
Article Synopsis
  • A series of fire experiments were conducted using a 1/10 scale model tunnel with a lateral open shaft to study the effects of a mechanical exhaust system on temperature changes during a fire.
  • The research revealed important correlations between smoke extraction rates and ceiling temperatures, with variations observed in temperature distribution near the fire source based on induced longitudinal velocity.
  • Findings led to the development of a modified model for maximum excess temperature and a simplified model for ceiling temperature decay, which are significant for improving fire safety measures in mountain tunnels.
View Article and Find Full Text PDF

Optical single-shot readout of spin qubits in silicon.

Nat Commun

January 2025

TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Str. 1, Garching, Germany.

Small registers of spin qubits in silicon can exhibit hour-long coherence times and exceeded error-correction thresholds. However, their connection to larger quantum processors is an outstanding challenge. To this end, spin qubits with optical interfaces offer key advantages: they can minimize the heat load and give access to modular quantum computing architectures that eliminate cross-talk and offer a large connectivity.

View Article and Find Full Text PDF

Hibernating brown bears, due to a drastic reduction in metabolic rate, show only moderate muscle wasting. Here, we evaluate if ATPase activity of resting skeletal muscle myosin can contribute to this energy sparing. By analyzing single muscle fibers taken from the same bears, either during hibernation or in summer, we find that fibers from hibernating bears have a mild decline in force production and a significant reduction in ATPase activity.

View Article and Find Full Text PDF
Article Synopsis
  • Urbanization is affecting landscapes and ecosystems, particularly in urban areas where trees play a vital role in regulating climate, air quality, and biodiversity.
  • This study focuses on comparing tree leaf structures and environmental conditions between urban and suburban sites in the Chicago area, using Norway Maple and Little-leaved Linden as subjects.
  • The research found that urban areas had higher temperatures and greater leaf trait variations, with Norway Maple showing higher gas exchange rates in urban settings, indicating greater water loss compared to suburban sites.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!