A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical and Numerical Study on Stress Intensity Factors for FRP-Strengthened Steel Plates with Double-Edged Cracks. | LitMetric

Theoretical and Numerical Study on Stress Intensity Factors for FRP-Strengthened Steel Plates with Double-Edged Cracks.

Sensors (Basel)

Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing 210096, China.

Published: July 2018

This paper presents a theoretical and numerical study on the stress intensity factors for double-edged cracked steel plates strengthened with fiber reinforced polymer (FRP) plates. Based on the stress intensity factor solution for infinite center-cracked steel plates strengthened with FRP plates, expressions of the stress intensity factors were proposed for double-edged cracked steel plates strengthened with FRP plates by introducing two correction factors: and . A finite element (FE) simulation was carried out to calculate the stress intensity factors of the steel plate specimens. Numerous combinations of the specimen width, crack length, FRP thickness and Young's modulus, adhesive thickness, and shear modulus were considered to conduct the parametric investigation. The FE results were used to investigate the main influencing factors of the stress intensity factors and the correction factor, . The expression of the correction factor, , was formulated and calibrated based on the FE results. The proposed expressions of the stress intensity factors were a function of the applied stress, the crack length, the ratio between the crack length and the width of the steel plate, the stiffness ratio between the FRP plate and steel plate, the adhesive thickness, and the shear modulus. Finally, the theoretical results and numerical results were compared to validate the proposed expressions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068973PMC
http://dx.doi.org/10.3390/s18072356DOI Listing

Publication Analysis

Top Keywords

stress intensity
28
intensity factors
24
steel plates
16
theoretical numerical
12
plates strengthened
12
frp plates
12
steel plate
12
crack length
12
numerical study
8
stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!