Different-shaped ultrafine MoNbTaW high-entropy alloy powders were firstly prepared by a convenient mechanical alloying method. The phase composition and microstructure of the powders were characterized. The powders are ultrafine with nano-sized grains and a good homogeneous microstructure. All the powders have a single body-centered cubic solid solution phase and form the high-entropy alloy during mechanical alloying. These powders with different shapes are quite attractive for developing high-performance MoNbTaW high-entropy alloy bulk and coatings combined with a following sintering, spraying, or additive manufacturing technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6073140PMC
http://dx.doi.org/10.3390/ma11071250DOI Listing

Publication Analysis

Top Keywords

mechanical alloying
12
high-entropy alloy
12
different-shaped ultrafine
8
ultrafine monbtaw
8
monbtaw high-entropy
8
microstructure powders
8
powders
6
monbtaw hea
4
hea powders
4
powders prepared
4

Similar Publications

Background: Implant fixation is often the cornerstone of musculoskeletal surgical procedures performed to provide bony fixation and/or fusion. The aim of this study was to evaluate how different design features and manufacturing methods influence implant osseointegration and mechanical properties associated with fixation in a standardized model in cancellous bone of adult sheep.

Methods: We evaluated the performance of three titanium alloy implants: (A) iFuse-TORQ implant; (B) Fenestrated Sacroiliac Device; and (C) Standard Cancellous Bone Screw in the cancellous bone of the distal femur and proximal tibia in 8 sheep.

View Article and Find Full Text PDF

In the realm of materials science and engineering, the pursuit of advanced materials with tailored properties has been a driving goal behind technological progress. Scientific interest in laser powder bed fusion (L-PBF) fabricated NiTi alloy has in recent times seen an upsurge of activity. In this study, we investigate the impact of varying volume energy density (VED) during L-PBF on the microstructure and corrosion behaviour of NiTi alloys in both scan (XY) and built (XZ) planes.

View Article and Find Full Text PDF

Load-bearing capacity of an experimental dental implant made of Nb-1Zr.

J Mater Sci Mater Med

January 2025

Clinic of Prosthetic Dentistry and Biomedical Materials Research, Hannover Medical School, Hannover, Germany.

Although implants have undergone a remarkable development over the past decades, modern implants still show complications that make the improvement of materials necessary. The presented study investigates the load-bearing capacity of an experimental dental implant made of a niobium alloy (Nb1Zr) compared to identical implants made of Ti6Al4V using chewing simulation for artificial aging. Eight implants each with an experimental design were manufactured from Nb1Zr and Ti6Al4V.

View Article and Find Full Text PDF

This study introduces a hybrid network model for phase classification, integrating quantum networks and complex-valued neural networks. This architecture uses elemental composition as its only input, eliminating complex feature engineering. Parameterized quantum networks handle sparse elemental data and convert data from real to complex domains, increasing information dimensionality.

View Article and Find Full Text PDF

The complementary properties of corrosion resistance and ballistic resistance of AA5083 and AA7075, respectively, explain the significance of welding these two alloys in the marine armor industry. This study investigates a novel Al-SiC matrix reinforcement with a different SiC weight ratio in dissimilar friction stir welding of the AA5083/AA7075 joint at different transverse and rotational speeds. The study deduced that the novel matrix can play an important role in improving strength and ductility simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!