Nanoparticles provide long-term stability of bevacizumab preserving its antiangiogenic activity.

Acta Biomater

I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal; School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK. Electronic address:

Published: September 2018

Unlabelled: Bevacizumab is one of the most common monoclonal antibodies used to treat cancer due to its antiangiogenic role. However, the frequent parenteral administrations are not attractive for the patient adhesion to the therapy. Nanoencapsulation of bevacizumab might be a useful alternative to increase administration intervals, due to controlled release properties. To achieve a long-term bevacizumab stability into PLGA nanoparticles, we developed an optimized and validated lyophilization protocol. The co-encapsulation of trehalose and bevacizumab into PLGA nanoparticles, associated to their lyophilization with external 10% (w/v) of trehalose, allowed maintenance of the physical-chemical characteristics of nanoparticles and bevacizumab secondary and tertiary structure. More relevant, the antiangiogenic activity of bevacizumab was kept over 6 months of storage while formulated with this protocol. No significant differences were found upon 6 months of storage at 4 °C and 25 °C/60% HR, and minor differences were observed for storage at 40 °C/75% HR, bringing to our knowledge, the first successfully report for monoclonal antibody storage at room temperature, without losing its structural and functional features. Our results served as starting point to understand the monoclonal antibody-based nanoparticle behavior over time, creating an innovative approach for a long-term monoclonal antibody stability.

Statement Of Significance: Nanoencapsulation of monoclonal antibodies has boost the interest of researchers as an alternative to the current antibody-based therapy, changing the route of administrations through controlled release of monoclonal antibodies. Despite good results have been achieved with nanoencapsulation process, no strategy has still found concerning a long-term stability of nanoparticles and monoclonal antibodies. In this study, the aim was to find out a validated and optimized method that allows a long-term stability of nanoparticles and antibodies. Over 6 months of storage, an optimized nanosystem was considered stable for both nanoparticles and antibody structure, at 4 °C and 25 °C, resulting the first successfully report for monoclonal antibody storage at room temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2018.07.040DOI Listing

Publication Analysis

Top Keywords

monoclonal antibodies
16
long-term stability
12
6 months storage
12
monoclonal antibody
12
antiangiogenic activity
8
monoclonal
8
controlled release
8
plga nanoparticles
8
report monoclonal
8
antibody storage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!