Cytochrome P450 monooxygenases (P450s) promote hydroxylations in a broad variety of substrates. Their prowess in C-H bond functionalization renders P450s promising catalysts for organic synthesis. However, operating P450 reactions involve complex management of the main substrates, O and nicotinamide adenine dinucleotide phosphate (NAD(P)H) reducing equivalents against an overall background of low operational stability. Whole-cell biocatalysis, although often used, offers no general solution to these problems. Herein, we present the design of a tailor-made, self-sufficient, operationally stabilized and recyclable P450 catalyst on porous solid support. Using enzymes as fusion proteins with the polycationic binding module Z , the P450s BM3 (from Bacillus megaterium) was coimmobilized with glucose dehydrogenase (type IV; from B. megaterium) on anionic sulfopropyl-activated carrier (ReliSorb SP). Immobilization via Z enabled each enzyme to be loaded in controllable amount, thus maximizing the relative portion of the rate limiting P450 BM3 (up to 19.5 U/g ) in total enzyme immobilized. Using lauric acid as a representative P450 substrate that is poorly accessible to whole-cell catalysts, we demonstrate complete hydroxylation at low catalyst loading (≤0.1 mol%) and efficient electron coupling (74%), inside of the catalyst particle, to the regeneration of NADPH from glucose (27 cycles) was achieved. The immobilized P450 BM3 showed a total turnover number of ∼18,000, thus allowing active catalyst to be recycled up to 20 times. This study therefore supports the idea of practical heterogeneous catalysis by P450s systems immobilized on solid support.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836874PMC
http://dx.doi.org/10.1002/bit.26802DOI Listing

Publication Analysis

Top Keywords

p450 bm3
12
tailor-made self-sufficient
8
cytochrome p450
8
glucose dehydrogenase
8
solid support
8
p450
7
catalyst
5
self-sufficient recyclable
4
recyclable monooxygenase
4
monooxygenase catalyst
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!