Polymodal ion channels transduce multiple stimuli of different natures into allosteric changes; these dynamic conformations are challenging to determine and remain largely unknown. With recent advances in single-particle cryo-electron microscopy (cryo-EM) shedding light on the structural features of agonist binding sites and the activation mechanism of several ion channels, the stage is set for an in-depth dynamic analysis of their gating mechanisms using spectroscopic approaches. Spectroscopic techniques such as electron paramagnetic resonance (EPR) and double electron-electron resonance (DEER) have been mainly restricted to the study of prokaryotic ion channels that can be purified in large quantities. The requirement for large amounts of functional and stable membrane proteins has hampered the study of mammalian ion channels using these approaches. EPR and DEER offer many advantages, including determination of the structure and dynamic changes of mobile protein regions, albeit at low resolution, that might be difficult to obtain by X-ray crystallography or cryo-EM, and monitoring reversible gating transition (i.e., closed, open, sensitized, and desensitized). Here, we provide protocols for obtaining milligrams of functional detergent-solubilized transient receptor potential cation channel subfamily V member 1 (TRPV1) that can be labeled for EPR and DEER spectroscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102038 | PMC |
http://dx.doi.org/10.3791/57796 | DOI Listing |
Arch Microbiol
January 2025
Department of Stomatology, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
Treponema denticola, a bacterium that forms a "red complex" with Porphyromonas gingivalis and Tannerella forsythia, is associated with periodontitis, pulpitis, and other oral infections. The major surface protein (Msp) is a surface glycoprotein with a relatively well-established overall domain structure (N-terminal, central and C-terminal regions) and a controversial tertiary structure. As one of the key virulence factors of T.
View Article and Find Full Text PDFCell Physiol Biochem
January 2025
UR-UPJV 4667, UFR Sciences, Université de Picardie Jules Verne, Amiens, France,
Quiescent pancreatic stellate cells (PSCs) represent only a very low proportion of the pancreatic tissue, but their activation leads to stroma remodeling and fibrosis associated with pathologies such as chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). PSC activation can be induced by various stresses, including acidosis, growth factors (PDGF, TGFβ), hypoxia, high pressure, or intercellular communication with pancreatic cancer cells. Activated PSC targeting represents a promising therapeutic strategy, but little is known regarding the molecular mechanisms underlying the activation of PSCs.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.
View Article and Find Full Text PDFActa Physiol (Oxf)
February 2025
Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.
Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.
View Article and Find Full Text PDFEur J Med Res
January 2025
Department of Anesthesiology, Chongqing Health Center for Women and Children, Women and Children's Hospital of Chongqing Medical University, No. 120, Longshan Road, Yubei District, Chongqing, 401147, China.
Background: Postoperative pain intensity is influenced by various factors, including genetic variations. The SCN10A gene encodes the Nav1.8 sodium channel protein, which is crucial for pain signal transmission in peripheral sensory neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!