High-throughput sequencing technologies have revolutionized microbiome research by allowing the relative quantification of microbiome composition and function in different environments. In this work we focus on the identification of microbial signatures, groups of microbial taxa that are predictive of a phenotype of interest. We do this by acknowledging the compositional nature of the microbiome and the fact that it carries relative information. Thus, instead of defining a microbial signature as a linear combination in real space corresponding to the abundances of a group of taxa, we consider microbial signatures given by the geometric means of data from two groups of taxa whose relative abundances, or balance, are associated with the response variable of interest. In this work we present , a greedy stepwise algorithm for selection of balances or microbial signatures that preserves the principles of compositional data analysis. We illustrate the algorithm with 16S rRNA abundance data from a Crohn's microbiome study and an HIV microbiome study. We propose a new algorithm for the identification of microbial signatures. These microbial signatures can be used for diagnosis, prognosis, or prediction of therapeutic response based on an individual's specific microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6050633 | PMC |
http://dx.doi.org/10.1128/mSystems.00053-18 | DOI Listing |
Bioinformatics
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.
View Article and Find Full Text PDFPathogens
January 2025
Center for Infectious, Zoonotic and Vector-Borne Diseases, Lincoln Memorial University, Harrogate, TN 37752, USA.
According to the Humane Society, 25 to 40 percent of pet dogs in the United States are adopted from animal shelters. Shelter dogs can harbor bacterial, viral, fungal, and protozoal pathogens, posing risks to canine and human health. These bacterial pathogens may also carry antibiotic resistance genes (ARGs), serving as a reservoir for antimicrobial resistance (AMR) transmission.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
The Roger Williams Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London & Foundation for Liver Research, London SE5 9NT, UK.
Bacterial translocation-induced inflammation and immune dysfunction are recognised factors contributing to the pathogenesis of primary biliary cholangitis (PBC). However, the specific involvement of interferons (IFNs) and soluble checkpoints (sol-CRs) in shaping the immune landscape in PBC patients remains unexplored. Furthermore, the influence of ursodeoxycholic acid (UDC) on these immune mediators is unknown.
View Article and Find Full Text PDFMicroorganisms
January 2025
Intensive Care Unit, Sismanogleio General Hospital, 37 Sismanogleiou Str., 15126 Marousi, Greece.
Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!