Wearable biosensors have emerged as an alternative evolutionary development in the field of healthcare technology due to their potential to change conventional medical diagnostics and health monitoring. However, a number of critical technological challenges including selectivity, stability of (bio)recognition, efficient sample handling, invasiveness, and mechanical compliance to increase user comfort must still be overcome to successfully bring devices closer to commercial applications. We introduce the integration of an electrochemical transistor and a tailor-made synthetic and biomimetic polymeric membrane, which acts as a molecular memory layer facilitating the stable and selective molecular recognition of the human stress hormone cortisol. The sensor and a laser-patterned microcapillary channel array are integrated in a wearable sweat diagnostics platform, providing accurate sweat acquisition and precise sample delivery to the sensor interface. The integrated devices were successfully used with both ex situ methods using skin-like microfluidics and on human subjects with on-body real-sample analysis using a wearable sensor assembly.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054510 | PMC |
http://dx.doi.org/10.1126/sciadv.aar2904 | DOI Listing |
Biosensors (Basel)
November 2024
Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey.
Surface plasmon resonance (SPR) sensors have emerged as a powerful tool in biosensing applications due to their ability to provide sensitive and real-time detection of chemical and biological analytes. This review focuses on the development and application of molecularly imprinted polymer (MIP)-based SPR sensors for food analysis. By combining the high selectivity of molecular imprinting techniques with the sensitivity of SPR, these sensors offer significant advantages in detecting food contaminants and other target molecules.
View Article and Find Full Text PDFPlant Dis
December 2024
Kansas State University, Plant Pathology, 4024 Throckmorton PSC, Manhattan, Kansas, United States, 66506.
Biosens Bioelectron
December 2024
Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:
Creatinine (Ctn) is a biomarker for chronic kidney disease (CKD). In this study, a highly sensitive and specific detection method for Ctn based on a molecularly imprinted polymer (MIP) based electrochemical biosensor was developed. Mxene (Mx), which has high absorption properties, was modified using carbon screen-printed electrodes (SPCE).
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
The photoswitching of supramolecular host-guest complexes is the basis of numerous molecularly controlled macroscopic functions, such as sol-gel transition, photopharmacology, the active transport of ions or molecules, light-powered molecular machines, and much more. The most commonly used systems employ photoactive azobenzene guests and synthetic host molecules, which bind as the stable isomers and dissociate as the forms after exposure to UV light. We present a new, extraordinarily efficient cucurbit[7]uril (CB7)/diazocine host/guest complex with inverted stability that self-assembles under UV irradiation and dissociates in the dark.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China.
Facilitated transport membranes (FTMs) with an ultraselective layer prepared from amine-rich polyvinylamine (PVAm)/2-(1-piperazinyl)ethylamine salt of sarcosine (PZEA-Sar) (denoted by PM) and an amorphous dendritic cross-linked network of PVAm-functionalized poly(ethylene glycol)diglycidyl ether (PEGDGE) (named PP) were designed for CO separations. The developed membranes expedited CO transport over N through the synergistic effect from the induced CO-philic ethylene oxide groups and highly hydrophilic and polar hydroxyl groups together with the low-crystallinity PP networks, which offer a high diffusion rate for CO-amine complexes through the membrane and stabilize small molecular mobile carriers via hydrogen bonding. The best (PM/PP-10)/polysulfone (PSf) composite membranes achieved a superior CO/N selectivity of 230 (4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!