Structural Analysis of Phosphoserine Aminotransferase (Isoform 1) From - the Enzyme Involved in the Phosphorylated Pathway of Serine Biosynthesis.

Front Plant Sci

Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL, United States.

Published: July 2018

Phosphoserine aminotransferase (PSAT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of 3-phosphohydroxypyruvate (3-PHP) to 3-phosphoserine (PSer) in an L-glutamate (Glu)-linked reversible transamination reaction. This process proceeds through a bimolecular ping-pong mechanism and in plants takes place in plastids. It is a part of the phosphorylated pathway of serine biosynthesis, one of three routes recognized in plant organisms that yield serine. In this three-step biotransformation, 3-phosphoglycerate (3-PGA) delivered from plastidial glycolysis and Calvin cycle is oxidized by 3-PGA dehydrogenase. Then, 3-PHP is subjected to transamination with Glu to yield PSer and α-ketoglutarate (AKG). In the last step of the pathway, serine is produced by the action of phosphoserine phosphatase. Here we present the structural characterization of PSAT isoform 1 from (PSAT1), a dimeric S-shaped protein that truncated of its 71-residue-long chloroplast-targeting signal peptide. Three crystal structures of PSAT1 captured at different stages of the reaction: (i) internal aldimine state with PLP covalently bound to the catalytic K265, (ii) holoenzyme in complex with pyridoxamine-5'-phosphate (PMP) after transfer of the amino group from glutamate and (iii) the geminal diamine intermediate state wherein the cofactor is covalently bound to both, K265 and PSer. These snapshots over the course of the reaction present detailed architecture of PSAT1 and allow for the comparison of this plant enzyme with other PSATs. Conformational changes of the protein during the catalytic event concern (i) the neighborhood of K265 when the amino group is transferred to the cofactor to form PMP and (ii) movement of the gate-keeping loop (residues 391-401) upon binding of 3-PHP and PSer. The latter conformational change of the loop may likely be one of key elements that regulate catalytic activity of PSATs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043687PMC
http://dx.doi.org/10.3389/fpls.2018.00876DOI Listing

Publication Analysis

Top Keywords

pathway serine
12
phosphoserine aminotransferase
8
phosphorylated pathway
8
serine biosynthesis
8
covalently bound
8
amino group
8
structural analysis
4
analysis phosphoserine
4
aminotransferase isoform
4
isoform enzyme
4

Similar Publications

MTHFD2 promotes breast cancer cell proliferation through IFRD1 RNA m6A methylation-mediated HDAC3/p53/mTOR pathway.

Neoplasma

December 2024

Department of Pathology and Forensic Medicine, College of Basic Medical Sciences, Dalian Medical University, Dalian, China.

MTHFD2 is highly overexpressed in breast cancer tissues, indicating that it might be used as a target in breast cancer treatment. This study aims to determine the role of MTHFD2 in breast cancer cell proliferation and the molecular pathways involved. In order to investigate MTHFD2 gene expression and its downstream pathways in breast cancer, we started our inquiry with a bioinformatics analysis.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast malignancy. Although some patients benefit from immune checkpoint therapy, current treatment methods rely mainly on chemotherapy. It is imperative to develop predictors of efficacy and identify individuals who will be sensitive to particular treatment regimens.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) is one of the most common malignancies in the urinary system, and clear cell renal cell carcinoma (ccRCC) is the most common subtype. MYBL2 has been reported to be overexpressed in various tumors and associated with poor prognosis in patients, but its biological role in ccRCC remains unclear. In this study, we investigated the mRNA and protein expression levels of MYBL2 in ccRCC samples and evaluated the prognostic value of MYBL2 using TCGA dataset.

View Article and Find Full Text PDF

Chemotherapy is an effective treatment for gastric cancer. However, many patients develop resistance to chemotherapeutic agents during clinical treatment. LncRNA CCAT1 has recently been shown to influence cellular resistance to specific chemotherapeutic drugs, but its role in gastric cancer remains underexplored.

View Article and Find Full Text PDF

Serpins (serine protease inhibitors) constitute a superfamily of proteins with functional diversity and unusual conformational flexibility. In insects, serpins act as multiple inhibitors, by forming inactive acyl-enzyme complexes, in regulating Spätzles activation, phenoloxidases (POs) activity, and other cytokines. In this study, we present the cloning and characterization of Octodonta nipae serpin2 (OnSPN2), a 415 residues protein homologous to Tenebrio molitor 42Dd-like.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!