Purpose: Retinal G protein-coupled receptor (RGR) mRNA is transcribed in the outer nuclear layer of human retinas; however, it is not known whether the gene is expressed in the rod or cone photoreceptors. In this study, we investigate broader expression of the normal RGR isoform in photoreceptors of human and bovine retinas.

Methods: We produced and validated a rabbit polyclonal antipeptide antibody (DE15) that is directed against a peptide sequence (SSLLRRWPHGSEGC) partly conserved in RGR across several species. Bovine and human retina sections were analyzed with immunohistochemical and double-label immunofluorescent staining.

Results: The DE15 antibody bound specifically to overexpressed recombinant RGR, purified RGR from bovine RPE, and RGR in crude RPE membrane extracts without cross-reaction to other proteins. Immunostaining of diurnal bovine and human retinas with DE15 showed labeling of long-wavelength-sensitive and short-wavelength-sensitive cone photoreceptors and some retinal ganglion cells in both species. Strong labeling with DE15 was detected throughout the cone photoreceptor, including the outer segment, inner segment, cell body, axon, and cone pedicle, while rod outer segments were negative. Immunostaining for human exon-6-skipping RGR (RGR-d) was found primarily at the tips of the outer segment of the cones.

Conclusions: The results indicate that the cone photoreceptors in these mammals express a nonvisual opsin of the Go/RGR or tetraopsin group. RGR and the visual pigments are predominantly colocalized in the cone outer segment, which suggests functional interaction among these opsins. Human cone photoreceptors may also contain normal RGR and the aberrant RGR-d splice isoform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031102PMC

Publication Analysis

Top Keywords

cone photoreceptors
20
outer segment
12
rgr
9
nonvisual opsin
8
retinal protein-coupled
8
protein-coupled receptor
8
visual pigments
8
human bovine
8
cone
8
human retinas
8

Similar Publications

Purpose: There is evidence of the role of dark adaptation (DA) as a functional biomarker in age-related macular degeneration (AMD) where foveal cones are impacted during the initial stages of AMD. In this study we determine the repeatability of smartphone application (MOBILE DA) to evaluate the cone-mediated dark adaptation (DA) in healthy young adults.

Methods: Testing was done by placing a smartphone in front of the subject in a dark room.

View Article and Find Full Text PDF

Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity.

View Article and Find Full Text PDF

Rod and cone photoreceptor cells are specialized neurons responsible for transforming the information reaching the eyes in the form of photons into the language of neuronal activity. Rods are the most prevalent photoreceptor type, primarily responsible for light detection under conditions of limited illumination. Here we demonstrate that human rods have a morphological organization unique among all described species, whereby the cell soma extends alongside the light-sensitive outer segment compartment to form a structure we have termed the "accessory inner segment.

View Article and Find Full Text PDF

Luminance invariant encoding in mouse primary visual cortex.

Cell Rep

January 2025

Center for Perceptual Systems, The University of Texas at Austin, Austin, TX 78712, USA; Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA; Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA. Electronic address:

The visual system adapts to maintain sensitivity and selectivity over a large range of luminance intensities. One way that the retina maintains sensitivity across night and day is by switching between rod and cone photoreceptors, which alters the receptive fields and interneuronal correlations of retinal ganglion cells (RGCs). While these adaptations allow the retina to transmit visual information to the brain across environmental conditions, the code used for that transmission varies.

View Article and Find Full Text PDF

Human performance in psychophysical detection and discrimination tasks is limited by inner noise. It is unclear to what extent this inner noise arises from early noise (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!