Purpose: The Seahorse XFp platform is widely used for metabolic assessment of cultured cells. Current methods require replating of cells into specialized plates. This is problematic for certain cell types, such as primary human fetal RPE (hfRPE) cells, which must be cultured for months to become properly differentiated. Our goal was to overcome this limitation by devising a method for assaying intact cell monolayers with the Seahorse XFp, without the need for replating.

Methods: Primary hfRPE cells were differentiated by prolonged culture on filter inserts. Triangular sections of filters with differentiated cells attached were excised, transferred to XFp cell culture miniplate wells, immobilized at the bottoms, and subjected to mitochondrial stress tests. Replated cells were measured for comparison. Differentiated hfRPE cells were challenged or not with bovine photoreceptor outer segments (POS), and mitochondrial stress tests were performed 3.5 h later, after filter excision and transfer to assay plates.

Results: Differentiated hfRPE cells assayed following filter excision demonstrated increased maximal respiration, increased spare respiration capacity, and increased extracellular acidification rate (ECAR) relative to replated controls. hfRPE cells challenged with POS exhibited increased maximal respiration and spare capacity, with no apparent change in the ECAR, relative to untreated controls.

Conclusions: We have developed a method to reproducibly assay intact, polarized monolayers of hfRPE cells with the Seahorse XFp platform and have shown that the method yields more robust metabolic measurements compared to standard methods and is suitable for assessing the consequences of prolonged perturbations of differentiated cells. We expect our approach to be useful for a variety of studies involving metabolic assessment of adherent cells cultured on filters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6031101PMC

Publication Analysis

Top Keywords

hfrpe cells
24
seahorse xfp
12
cells
12
intact polarized
8
xfp platform
8
metabolic assessment
8
cells cultured
8
differentiated cells
8
mitochondrial stress
8
stress tests
8

Similar Publications

Transplacental Transfer of Oxytocin and Its Impact on Neonatal Cord Blood and In Vitro Retinal Cell Activity.

Cells

October 2024

Department of Pediatrics, Division of Neonatology and Newborn Nursery, University of Wisconsin-Madison, 1300 University Avenue, SMI 112, Madison, WI 53706, USA.

The development of fetal organs can be impacted by systemic changes in maternal circulation, with the placenta playing a pivotal role in maintaining pregnancy homeostasis and nutrient exchange. In clinical obstetrics, oxytocin (OXT) is commonly used to induce labor. To explore the potential role of OXT in the placental homeostasis of OXT, we compared OXT levels in neonatal cord blood among neonates (23-42 weeks gestation) whose mothers either received prenatal OXT or experienced spontaneous labor.

View Article and Find Full Text PDF

The daily phagocytosis of photoreceptor outer segments by the retinal pigment epithelium (RPE) contributes to the accumulation of an intracellular aging pigment termed lipofuscin. The toxicity of lipofuscin is well established in Stargardt's disease, the most common inherited retinal degeneration, but is more controversial in age-related macular degeneration (AMD), the leading cause of irreversible blindness in the developed world. Determining lipofuscin toxicity in humans has been difficult, and animal models of Stargardt's have limited toxicity.

View Article and Find Full Text PDF

The retinal pigment epithelial (RPE) cell monolayer forms the outer blood-retinal barrier and has a crucial role in ocular pharmacokinetics. Although several RPE cell models are available, there have been no systematic comparisons of their barrier properties with respect to drug permeability. We compared the barrier properties of RPE secondary cell lines (ARPE19, and ARPE19mel) and both primary (hfRPE) and stem-cell derived RPE (hESC-RPE) cells by investigating the permeability of nine drugs (aztreonam, ciprofloxacin, dexamethasone, fluconazole, ganciclovir, ketorolac, methotrexate, voriconazole, and quinidine) across cell monolayers.

View Article and Find Full Text PDF

The retina and RPE cells are regularly exposed to chronic oxidative stress as a tissue with high metabolic demand and ROS generation. DJ-1 is a multifunctional protein in the retina and RPE that has been shown to protect cells from oxidative stress in several cell types robustly. Oxidation of DJ-1 cysteine (C) residues is important for its function under oxidative conditions.

View Article and Find Full Text PDF

Heterogeneity of Potassium Channels in Human Embryonic Stem Cell-Derived Retinal Pigment Epithelium.

Stem Cells Transl Med

July 2022

BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Human pluripotent stem cell (hPSC)-derived retinal pigment epithelium (RPE) is extensively used in RPE research, disease modeling, and transplantation therapies. For successful outcomes, a thorough evaluation of their physiological authenticity is a necessity. Essential determinants of this are the different ion channels of the RPE, yet studies evaluating this machinery in hPSC-RPE are scarce.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!