In the present study the performance of a series of star-like branched polyacrylamides (SB-PAMs) has been investigated in oil recovery experiments to ultimately determine their suitability as novel thickening agent for enhanced oil recovery (EOR) applications. Hereby, SB-PAMs were compared with conventional linear PAM. The effect of a branched molecular architecture on rheology, and consequently on oil recovery was discussed. Rheological measurements identified unique properties for the SB-PAMs, as those showed higher robustness under shear and higher salt tolerance than their linear analogues. EOR performance was evaluated by simulating oil recovery in two-dimensional flow-cell measurements, showing that SB-PAMs perform approximately 3-5 times better than their linear analogues with similar molecular weight. The salinity did not influence the solution viscosity of the SB-PAM, contrarily to what happens for partially hydrolyzed polyacrylamide (HPAM). Therefore, SB-PAMs are more resilient under harsh reservoir conditions, which can make them attractive for EOR applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052938 | PMC |
http://dx.doi.org/10.1021/acs.iecr.7b03368 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!