GaN nanowires (NWs) are promising building blocks for future optoelectronic devices and nanoelectronics. They exhibit stronger piezoelectric properties than bulk GaN. This phenomena may be crucial for applications of NWs and makes their study highly important. We report on an investigation of the structure evolution of a single GaN NW under an applied voltage bias along polar [0001] crystallographic direction until its mechanical break. The structural changes were investigated using coherent X-ray Bragg diffraction. The three-dimensional (3D) intensity distributions of the NWs without metal contacts, with contacts, and under applied voltage bias in opposite polar directions were analyzed. Coherent X-ray Bragg diffraction revealed the presence of significant bending of the NWs already after metal contacts deposition, which was increased at applied voltage bias. Employing analytical simulations based on elasticity theory and a finite element method (FEM) approach, we developed a 3D model of the NW bending under applied voltage. From this model and our experimental data, we determined the piezoelectric constant of the GaN NW to be about 7.7 pm/V in [0001] crystallographic direction. The ultimate tensile strength of the GaN NW was obtained to be about 1.22 GPa. Our work demonstrates the power of in operando X-ray structural studies of single NWs for their effective design and implementation with desired functional properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.8b01802DOI Listing

Publication Analysis

Top Keywords

applied voltage
20
voltage bias
16
structural changes
8
single gan
8
[0001] crystallographic
8
crystallographic direction
8
coherent x-ray
8
x-ray bragg
8
bragg diffraction
8
nws metal
8

Similar Publications

GC-DFT-Based Dynamic Product Distribution Reveals Enhanced CO-to-Methanol Electrocatalysis Durability by Heterogeneous CoPc.

J Phys Chem Lett

December 2024

School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Value-Added Catalytic Conversion and Reaction Engineering, Hefei University of Technology, Hefei 230009, China.

Heterogeneous cobalt phthalocyanine has emerged as a promising molecular catalyst for electrochemical reduction of CO to methanol. Boosting both electrocatalytic durability and selectivity remains a great challenge, which is more difficult with unknown regulation factors for the HER side reaction. Herein, to discover the key to balancing the durability and selectivity, as well as HER regulation, we carried out GC-DFT calculations, based on which dynamic product distribution modeling was conducted to visually present the variation of the product distribution within the applied voltage range.

View Article and Find Full Text PDF

Single-crystal high-nickel oxide with an integral structure can prevent intergranular cracks and the associated detrimental reactions. Yet, its low surface-to-volume ratio makes surficial degradation a more critical factor in electrochemical performance. Herein, artificial proton-rich (ammonium bicarbonate) shell is successfully introduced on the nickel-rich LiNiCoMnO single crystals for in situ electrochemically conversing into inorganic maskant to enhance stability of cathode.

View Article and Find Full Text PDF

Cryo-EM structure of the human Pannexin-3 channel.

Biochem Biophys Res Commun

December 2024

Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto, 603-8555, Japan. Electronic address:

Pannexin-3 (PANX3) is a member of the pannexin family of large-pore, ATP-permeable channels conserved across vertebrates. PANX3 contributes to various developmental and pathophysiological processes by permeating ATP and Ca ions; however, the structural basis of PANX3 channel function remains unclear. Here, we present the cryo-EM structure of human PANX3 at 2.

View Article and Find Full Text PDF

Semiconductive Coordination Polymer with Multi-Channel Charge Transfer for High-Performance Direct X-ray Detection.

Angew Chem Int Ed Engl

December 2024

Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350608, P. R. China., CHINA.

Coordination polymers (CPs) are promising for direct X-ray detection and imaging owing to higher designability and outstanding stability, however, it remains a challenge to achieve highly X-ray detection performance, particularly both high sensitivity and low detection limit at the same operating voltage. Herein, we construct a new conjugated CP {[Co(BPTTz)(DIPA)] DMA}n (1, BPTTz = 2,5-bis(pyridine-4-yl)thiazolo[5,4-d]thiazole, H2DIPA = 2,5-diiodoterephthalic acid, DMA = N, N'-dimethylacetamide), with multi-channel charge transfer by regulating the linker mediated electronic-state, which reduces carrier losses resulting from recombination or quenching, enhances the efficiency of charge separation and transfer, thus further optimizes X-ray detection performance. The semiconductor prepared based on this strategy achieves record values including the highest mobility-lifetime product (μτ, 8.

View Article and Find Full Text PDF

Growth of the metal-organic framework ZIF-67 on cellulosic substrates for triboelectric nanogenerators.

Nanoscale

December 2024

Nanomaterials and Systems Laboratory, Major of Mechatronics Engineering, Faculty of Applied Energy Systems, Jeju National University, Jeju-si, Republic of Korea.

Metal-organic frameworks (MOFs) are porous crystalline materials with a metal ion coordinated to a ligand molecule. Recently, MOFs are being explored extensively for energy harvesting triboelectrification. However, the majority of MOFs are brittle and hard to grow, thus leading to poor device stability and flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!