Biosilica incorporated 3D porous scaffolds for bone tissue engineering applications.

Mater Sci Eng C Mater Biol Appl

İzmir Institute of Technology, Department of Chemical Engineering, Gülbahçe Campus, Urla, İzmir 35430, Turkey. Electronic address:

Published: October 2018

As a natural and abundant silica mineral, diatomite particles (SiO-nHO) have been used in several areas such as filtration, photonics, sound and heat insulation, filler material and drug delivery due to its abundance, inexpensive cost, unique morphology and porous structure. But up to date, diatomite incorporated silica based scaffolds have not been used for bone tissue engineering applications. In the present study, the goal was to combine the useful biomaterial properties of both chitosan and diatomite as biocomposite organic/inorganic biomaterial for bone tissue engineering applications and optimize the silica content of the composites in order to obtain optimum morphological structure, high mechanical properties, enlarged surface area and enhanced cell proliferation. The effect of silica loading on the mechanical, morphological, chemical, and surface properties, wettability and biocompatibility of composite scaffolds were investigated. In addition, in vitro cytotoxicity and cellular activities including cell proliferation, ALP activity and biomineralization were investigated in order to determine biological activity of the composite scaffolds. Diatomite particles lead to enhancement in the water uptake capacity of scaffolds. Chitosan-silica composites exhibited 82-90% porosity. Wet chitosan-silica composite scaffolds exhibited higher compression moduli when compared to pure chitosan scaffold in the range of 67.3-90.1 kPa. Average pore size range of chitosan-diatomite composite scaffolds was obtained as 218-319 μm. In vitro results indicated that chitosan-diatomite composites did not show any cytotoxic effect on 3T3, MG-63 and Saos-2 cell lines. Scaffolds were found to be favorable for osteoblast proliferation. Diatomite incorporation showed promising effects on enhancing ALP activity as well as mineral formation on scaffold surface. Thus, the prepared scaffolds in this study can be considered prospective material for bone tissue engineering applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2018.05.040DOI Listing

Publication Analysis

Top Keywords

bone tissue
16
tissue engineering
16
engineering applications
16
composite scaffolds
16
scaffolds
9
scaffolds bone
8
diatomite particles
8
cell proliferation
8
alp activity
8
diatomite
5

Similar Publications

Multifunctional DNA-Collagen Biomaterials: Developmental Advances and Biomedical Applications.

ACS Biomater Sci Eng

January 2025

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States.

The complexation of nucleic acids and collagen forms a platform biomaterial greater than the sum of its parts. This union of biomacromolecules merges the extracellular matrix functionality of collagen with the designable bioactivity of nucleic acids, enabling advances in regenerative medicine, tissue engineering, gene delivery, and targeted therapy. This review traces the historical foundations and critical applications of DNA-collagen complexes and highlights their capabilities, demonstrating them as biocompatible, bioactive, and tunable platform materials.

View Article and Find Full Text PDF

Masquelet's induced membrane technique in the upper limb: a systematic review of the current outcomes.

J Orthop Traumatol

January 2025

Unità Operativa di Ortopedia e Traumatologia, APSS Trento, Largo Medaglie d'oro, 9, 38121, Trento, Italy.

Background: The Masquelet induced membrane technique is a surgical procedure that allows the reconstruction of segmental bone defects using a relatively simple approach that requires minimal resources from both the healthcare facility and the patient. Historically applied to the lower limb, this technique is gaining increasing attention in the literature for its use in the upper limb.

Methods: A systematic review of the literature was conducted using the PubMed and Google Scholar databases to identify all studies reporting the outcomes of the Masquelet induced membrane technique in the long bones of the upper limb (humerus, radius, and ulna) with a sample size of at least 3 patients.

View Article and Find Full Text PDF

The underlying mechanisms of the association of bone health with depression - an experimental study.

Mol Biol Rep

January 2025

Medical Sociology and Psychobiology, Department of Health and Physical Activity, University of Potsdam, 14469, Potsdam, Germany.

Background: Depression constitutes a risk factor for osteoporosis, but underlying molecular and cellular mechanisms are not fully understood. MiRNAs influence gene expression and are carried by extracellular vesicles (EV), affecting cell-cell communication.

Aims: (1) Identify the difference in miRNA expression between depressed patients and healthy controls; (2) Analyze associations of these miRNAs with bone turnover markers; (3) Analyze target genes of differentially regulated miRNAs and predict associated pathways regarding depression and bone metabolism.

View Article and Find Full Text PDF

A Chain of Events Leading to Posttraumatic Subacute Meningitis.

Am J Forensic Med Pathol

January 2025

County of Santa Clara, Medical Examiner-Coroner Office, San Jose, CA.

There are few reports that discuss the nebulous entity known as posttraumatic subacute meningitis. Herein, we describe a case where a male was found deceased with Streptococcus pyogenes meningitis 7 days after experiencing head trauma inflicted with a tow chain. Computed tomography scan prior to death revealed a scalp laceration with subcutaneous gas and a subdural hematoma.

View Article and Find Full Text PDF

Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies.

ACS Appl Mater Interfaces

January 2025

National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.

The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!