Hypoxia, which results from an inadequate supply of oxygen, is a major cause of concern in cancer therapy as it is associated with a reduction in the effectiveness of chemotherapy and radiotherapy in cancer treatment. Overexpression and stabilization of hypoxia-inducible factor 1α (HIF-1α) protein in tumours, due to hypoxia, results in poor prognosis and increased patient mortality. To increase oxygen tension in hypoxic areas, micro- and nanobubbles have been investigated by various researchers. In the present research, lipid-shelled oxygen nanobubbles (ONBs) were synthesized through a sonication method to reverse hypoxic conditions created in a custom-made hypoxic chamber. Release of oxygen gas from ONBs in deoxygenated water was evaluated by measuring dissolved oxygen. Hypoxic conditions were evaluated by performing in vitro experiments on MDA-MB231 breast cancer cells through the expression of HIF-1α and the fluorescence of image-iT™ hypoxia reagent. The results indicated the degradation of HIF-1α after the introduction of ONBs. We propose that ONBs are successful in reversing hypoxia, downregulating HIF-1α, and improving cellular conditions, leading to further medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/21691401.2018.1492420 | DOI Listing |
Cureus
November 2024
Department of Plastic Surgery, Kobe University Graduate School of Medicine, Kobe, JPN.
Nanobubbles are studied for their unique properties and possible applications in wound healing processes. This study investigates the effects of hydrogen (H₂), oxygen (O₂), and ozone (O₃) nanobubbles on fibroblast migration and proliferation using scratch wound healing assays. Fibroblast cells were treated with Dulbecco's Modified Eagle Medium (DMEM) combined with nanobubble solutions, and cell density was measured at 24 and 48 hours.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.
Purpose: Effective cancer treatment relies on the precise deployment of clinical imaging techniques to accurately treat tumors. One highly representative technology among these is multi-imaging guided phototherapy. This work introduces a new and innovative theranostic drug that combines near-infrared (NIR) irradiation-induced photodynamic therapy (PDT) and photothermal therapy (PTT) to treat malignancies.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China; Xiangfu Laboratory, Jiashan 314102, China; Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China. Electronic address:
Reactive oxygen species (ROS) produced in living systems are essential to physiological processes. However, excess ROS in the organism (oxidative stress) damages crucial cell components, leading to many diseases. Although some commercial antioxidants can counteract ROS damage, their inadequate tissue penetration, disruption of normal ROS functions, and possible toxicity have led to disappointing results in clinical trials for ROS-induced chronic diseases.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China.
Background: Sono-photodynamic therapy (SPDT), the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT), is a promising tumor treatment method. However, the hypoxic tumor microenvironment greatly compromises the efficacy of SPDT. Pyroptosis, a new type of programmed cell death, is mainly induced by some chemotherapeutic drugs in the current research, and rarely by SPDT.
View Article and Find Full Text PDFLangmuir
December 2024
New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!