Cell-penetrating peptides (CPPs) facilitate the transport of pharmacologically active molecules, such as plasmid DNA, short interfering RNA, nanoparticles, and small peptides. The accurate identification of new and unique CPPs is the initial step to gain insight into CPP activity. Experiments can provide detailed insight into the cell-penetration property of CPPs. However, the synthesis and identification of CPPs through wet-lab experiments is both resource- and time-expensive. Therefore, the development of an efficient prediction tool is essential for the identification of unique CPP prior to experiments. To this end, we developed a kernel extreme learning machine (KELM) based CPP prediction model called KELM-CPPpred. The main data set used in this study consists of 408 CPPs and an equal number of non-CPPs. The input features, used to train the proposed prediction model, include amino acid composition, dipeptide amino acid composition, pseudo amino acid composition, and the motif-based hybrid features. We further used an independent data set to validate the proposed model. In addition, we have also tested the prediction accuracy of KELM-CPPpred models with the existing artificial neural network (ANN), random forest (RF), and support vector machine (SVM) approaches on respective benchmark data sets used in the previous studies. Empirical tests showed that KELM-CPPpred outperformed existing prediction approaches based on SVM, RF, and ANN. We developed a web interface named KELM-CPPpred, which is freely available at http://sairam.people.iitgn.ac.in/KELM-CPPpred.html.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jproteome.8b00322 | DOI Listing |
Aim: Many combinations of inflammation-based markers have been reported their prognostic ability. The prognostic value of albumin-to-gama-glutamyltransferase ratio (AGR), an inflammation-related index, has been identified for several cancers. However, the predictive value of AGR for high-grade glioma patients remains unclear.
View Article and Find Full Text PDFBJOG
January 2025
Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Objective: To determine the diagnostic performance and clinical utility of the M4 prediction model and the NICE algorithm managing women with pregnancy of unknown location (PUL).
Design: The study has a superiority design regarding specificity for non-ectopic pregnancy for M4, given that the primary outcome of sensitivity for ectopic pregnancy (EP) is non-inferior in comparison with the NICE algorithm.
Setting: Emergency gynaecology units in Sweden.
BJU Int
January 2025
Faculty of Social Sciences (Health Sciences), Prostate Cancer Research Center, Tampere University, Tampere, Finland.
Objective: To assess the association between prostate-specific antigen (PSA) density (PSAD) and prostate cancer mortality after a benign result on systematic transrectal ultrasonography (TRUS)-guided prostate biopsy.
Patients And Methods: This retrospective study used data from the Finnish Randomised Study of Screening for Prostate Cancer (FinRSPC) collected between 1996 and 2020. We identified men aged 55-71 years randomised to the screening arm with PSA ≥4.
Thorac Cancer
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Background: Tracheal, bronchial, and lung cancers (TBL cancers) pose a significant global health challenge, with rising incidence and mortality rates, particularly in China. Studies from the Global Burden of Disease (GBD), 2021, can guide screening and prevention strategies for TBL cancer. This study aims to provide a comprehensive analysis of the burden of TBL cancers in China compared to global data.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The department of oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Non-small cell lung cancer (NSCLC) frequently metastasizes to the brain, significantly worsened prognoses. This study aimed to develop an interpretable model for predicting survival in NSCLC patients with brain metastases (BM) integrating radiomic features and RNA sequencing data. 292 samples are collected and analyzed utilizing T1/T2 MRIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!