Animal pharmacological studies suggest that potent and selective κ opioid receptor antagonists have potential as pharmacotherapies targeting depression, anxiety, and substance abuse (opiates, alcohol, nicotine, cocaine). We recently reported lead compound 1 as a new class of κ opioid receptor antagonists with only one basic amine group. Analogues were synthesized and evaluated for their in vitro opioid receptor antagonist properties using a [S]GTPγS binding assay. All analogues were pure opioid receptor antagonists with no agonist activity. Compounds 1, 8, 9, 13, and 14 ( K values 0.058-0.64 nM) are highly potent and highly selective for the κ relative to the μ and δ opioid receptors. Favorable calculated physiochemical properties were confirmed in rat PK studies, demonstrating brain penetration for selected compounds 1, 9, and 13. High κ opioid receptor potency and selectivity and highly favorable calculated physiochemical and PK properties for brain penetration suggest these compounds should be considered for further development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6692071PMC
http://dx.doi.org/10.1021/acs.jmedchem.8b00674DOI Listing

Publication Analysis

Top Keywords

opioid receptor
24
receptor antagonists
16
potent selective
8
lead compound
8
favorable calculated
8
calculated physiochemical
8
physiochemical properties
8
brain penetration
8
opioid
7
receptor
6

Similar Publications

Fentanyl is a potent synthetic opioid widely used perioperatively and illicitly as a drug of abuse . It is well established that fentanyl acts as a μ-opioid receptor agonist, signaling through Gα intracellular pathways to inhibit electrical excitability, resulting in analgesia and respiratory depression . However, fentanyl uniquely also triggers muscle rigidity, including respiratory muscles, hindering the ability to execute central respiratory commands or to receive external resuscitation.

View Article and Find Full Text PDF

Large library docking of tangible molecules has revealed potent ligands across many targets. While make-on-demand libraries now exceed 75 billion enumerated molecules, their synthetic routes are dominated by a few reaction types, reducing diversity and inevitably leaving many interesting bioactive-like chemotypes unexplored. Here, we investigate the large-scale enumeration and targeted docking of isoquinuclidines.

View Article and Find Full Text PDF

Introduction: Anti-GD2 immunotherapy has improved outcomes for children with high-risk neuroblastoma (HRNBL). Dinutuximab promotes complement-mediated reaction against disialoganglioside GD2, which is expressed in peripheral nerves and over-expressed in neuroblastoma. Dinutuximab is associated with ≥grade 3 neuropathic pain.

View Article and Find Full Text PDF

Novel tertiary diarylethylamines as functionally selective agonists of the kappa opioid receptor.

Bioorg Med Chem Lett

January 2025

Contineum Therapeutics, 3565 General Atomics Court, Suite 200, San Diego, CA 92121, United States.

Novel kappa opioid receptor (KOR) agonists that preferentially activate G-protein signaling versus β-arrestin-2 recruitment are described. Starting from a literature-reported phenol-containing diphenethylamine KOR agonist, structure-activity relationship (SAR) studies revealed replacement of the phenol with various non-hydroxylated bicyclic heteroaromatics led to tertiary diarylethylamines which retained KOR agonist activity and improved metabolic stability in human liver microsomes. Further optimizations produced compound 39, a potent activator of G-protein signaling (GTPγS EC = 14 nM, 83 % E) that did not elicit a β-arrestin-2 recruitment functional response (E < 10 %).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!