EmPis-1L, an Effective Antimicrobial Peptide Against the Antibiotic-Resistant VBNC State Cells of Pathogenic Bacteria.

Probiotics Antimicrob Proteins

Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518055, China.

Published: June 2019

The antibiotic-resistant viable but non-culturable (VBNC) pathogenic bacteria are considered as a new threat to public health. Antimicrobial peptides (AMPs), possessing bactericidal effects in a rapid membrane attacking mode, are supposed to be effective against bacteria entering the VBNC state. In the current study, the activity of grouper AMP piscidin killing the VBNC state cells of pathogenic bacteria Escherichia coli O157, Staphylococcus aureus, and Vibrio parahaemolyticus OS4 was studied. After entering the VBNC state, cells of E. coli O157, S. aureus, and V. parahaemolyticus OS4 developed resistance to the antibiotics Ampicillin and Kanamycin. Rather than truncated form of Malabar grouper piscidin 1 (EmPis-1S), full-length Malabar grouper piscidin 1 (EmPis-1L) showed strong activity to kill the above VBNC bacteria. The VBNC state cells (1 × 10 CFU/mL) of the three species of bacteria could be totally lysed by 10 μmol/L of EmPis-1L in 1 h. The VBNC state cells of S. aureus were most susceptible to EmPis-1L, which killed the cells by 100% in 30 min at the low concentration of 2.0 μmol/L. In addition, EmPis-1L at the concentration of no more than 10 μmol/L showed no observed toxicity to human lung carcinoma epithelial cells (A549) and mouse neuroblastoma cells (N2a). Accordingly, EmPis-1L could be a promisingly safe and efficient agent for eliminating the traditional antibiotic-resistant VBNC state cells of pathogenic bacteria, E. coli, S. aureus, and V. parahaemolyticus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-018-9446-3DOI Listing

Publication Analysis

Top Keywords

vbnc state
28
state cells
24
pathogenic bacteria
16
cells pathogenic
12
vbnc
9
cells
9
antibiotic-resistant vbnc
8
entering vbnc
8
coli o157
8
parahaemolyticus os4
8

Similar Publications

Comparative analyses of persistence traits in O157:H7 strains belonging to different clades including REPEXH01 and REPEXH02 strains.

Front Microbiol

December 2024

Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.

Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.

View Article and Find Full Text PDF

Controlling Listeria monocytogenes and its associated biofilms in the food industry requires various disinfection techniques, including physical, chemical, and biological treatments. Biocides, owing to their ease of use, cost-effectiveness, dissolvability in water, and efficacy against a wide range of microorganisms, are frequently selected options. Nonetheless, concerns have been raised about their efficacy in controlling L.

View Article and Find Full Text PDF

Holistic monitoring of Campylobacter jejuni biofilms with NanoLuc bioluminescence.

Appl Microbiol Biotechnol

December 2024

Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Ljubljana, Slovenia.

Campylobacter jejuni, a major cause of foodborne zoonotic infections worldwide, shows a paradoxical ability to survive despite its susceptibility to environmental and food-processing stressors. This resilience is likely due to the bacterium entering a viable but non-culturable state, often within biofilms, or even initiating biofilm formation as a survival strategy. This study presents an innovative application of NanoLuc bioluminescence to accurately monitor the development of C.

View Article and Find Full Text PDF

Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of () are closely linked to intracellular residency within macrophages. Our previous work showed that murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active , with striking differences in immunometabolic gene expression.

View Article and Find Full Text PDF

Rapid detection of bacterial pathogens is essential for food safety and public health, yet bacteria can evade detection by entering a viable but nonculturable (VBNC) state under sublethal stress, such as antimicrobial residues. These bacteria remain active but undetectable by standard culture-based methods without extensive enrichment, necessitating advanced detection methods. This study developed an AI-enabled hyperspectral microscope imaging (HMI) framework for rapid VBNC detection under low-level antimicrobials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!