Purpose: CADASIL is a small-vessel disease caused by a cysteine-altering pathogenic variant in one of the 34 epidermal growth factor-like repeat (EGFr) domains of the NOTCH3 protein. We recently found that pathogenic variant in EGFr domains 7-34 have an unexpectedly high frequency in the general population (1:300). We hypothesized that EGFr 7-34 pathogenic variant more frequently cause a much milder phenotype, thereby explaining an important part of CADASIL disease variability.
Methods: Age at first stroke, survival and white matter hyperintensity volume were compared between 664 CADASIL patients with either a NOTCH3 EGFr 1-6 pathogenic variant or an EGFr 7-34 pathogenic variant. The frequencies of NOTCH3 EGFr 1-6 and EGFr 7-34 pathogenic variant were compared between individuals in the genome Aggregation Database and CADASIL patients.
Results: CADASIL patients with an EGFr 1-6 pathogenic variant have a 12-year earlier onset of stroke than those with an EGFr 7-34 pathogenic variant, lower survival, and higher white matter hyperintensity volumes. Among diagnosed CADASIL patients, 70% have an EGFr 1-6 pathogenic variant, whereas EGFr 7-34 pathogenic variant strongly predominate in the population.
Conclusion: NOTCH3 pathogenic variant position is the most important determinant of CADASIL disease severity, with EGFr 7-34 pathogenic variant predisposing to a later onset of stroke and longer survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752295 | PMC |
http://dx.doi.org/10.1038/s41436-018-0088-3 | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFGenet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Genet Med
December 2024
Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
Objectives: Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modelling the natural history, and uncovering genotype-phenotype associations.
Methods: A cross-sectional analysis of 90 published and one novel case was performed, employing a Human Phenotype Ontology-based approach.
Eur J Neurol
January 2025
Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.
Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.
Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.
Clin Genet
December 2024
Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!