Background: Experimental pneumoperitoneum induces ischemia/reperfusion injury (IRI) in the liver, most likely via Kupffer cell (KC)-dependent mechanisms. Glycine has been shown to ameliorate IRI in various animal models. Thus, this study was performed to assess the effects of glycine on the liver after pneumoperitoneum.
Materials And Methods: Sprague-Dawley rats (220-250 g in weight) underwent CO2 pneumoperitoneum (12 mm Hg) for 90 min. Some rats received i.v. glycine (1.5 mL, 300 mM) 10 min before pneumoperitoneum. Controls were given the same volume of Ringer's solution. Transaminases, hepatic microcirculation, and phagocytosis of latex beads indexing both liver injury and KC activation were examined following pneumoperitoneum. Analysis of variance (ANOVA), plus a subsequent t test or χ2 test (or Fisher's exact test) were carried out as appropriate. Results are presented as mean ± SEM.
Results: Glycine significantly decreased lactate dehydrogenase at 1 h and both aspartate aminotransferase and alanine aminotransferase at 2 h after pneumoperitoneum from 477 ± 43, 154 ± 17, and 60 ± 6 U/L in controls to 348 ± 25, 101 ± 11, and 34 ± 3 U/L, respectively (p < 0.05). In parallel, glycine significantly decreased both the rate of permanent adherence of leukocytes to the endothelium by up to 35% and the rate of phagocytosis by > 50% compared to the control group.
Conclusion: Glycine decreased IRI after pneumoperitoneum, most likely via KC-dependent mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000490309 | DOI Listing |
Braz J Biol
January 2025
Universidade Federal Rural da Amazônia - UFRA, Belém, PA, Brasil.
Anthropic activities such as industries, agriculture and mining has generated public concern for its numerous irregular disposals of its waste, the incorrect deposition of heavy metals such as nickel (Ni) has caused the degradation and contamination of groundwater and water. Studies that point out cheap and efficient solutions have been an obstacle to the advancement of solutions for degraded area recovery programs. For this, a vegetable home experiment was developed, with an entirely randomized design with 5 treatments being a control (no metal) and 4 nickel concentrations (200 μM/L; 400 μM/L; 600 μM/L and 800 μM/L) with 6 repetitions.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Biotechnology, October University for Modern Sciences & Arts, 6th October City, Egypt.
Background: Magnesium (Mg) is essential for plant growth and development and plays critical roles in physiological and biochemical processes. Mg deficiency adversely affects growth of plants by limiting shoot and root development, disturbing the structure and membranes of the grana, reducing photosynthesis efficiency, and lowering net CO assimilation. The MGT (Magnesium transporter) family is responsible for the absorption and transportation of magnesium in plants.
View Article and Find Full Text PDFMol Carcinog
January 2025
Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China.
Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China.
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Hainan Pharmaceutical Research and Development Science Park, Hainan Medical University, Haikou 571157 China; Research Center for Drug Safety Evaluation of Hainan Province, Hainan Medical University, Haikou 571199 China. Electronic address:
Acute pulmonary inflammation is a severe lower respiratory tract infection. Sinensetin (SIN), a polymethoxyflavone with strong anti-inflammatory properties, is known to ameliorate LPS-induced acute inflammatory lung injury, but its molecular mechanisms are not fully understood. This study aimed to provide insight into the pharmacological mechanisms of SIN in attenuating acute pulmonary inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!