Nanoparticle formulations that allow for sustained delivery and brain targeting of the neuropeptide oxytocin.

Int J Pharm

Department of Pharmaceutical Sciences, Mercer University College of Pharmacy, Mercer University Health Sciences Center, Atlanta, GA, USA. Electronic address:

Published: September 2018

Oxytocin is a promising candidate for the treatment of social-deficit disorders such as Autism Spectrum Disorder, but oxytocin cannot readily pass the blood-brain barrier. Moreover, oxytocin requires frequent dosing as it is rapidly metabolized in blood. We fabricated four polymeric nanoparticle formulations using poly(lactic-co-glycolic acid) (PLGA) or bovine serum albumin (BSA) as the base material. In order to target them to the brain, we then conjugated the materials to either transferrin or rabies virus glycoprotein (RVG) as targeting ligands. The formulations were characterized in vitro for size, zeta potential, encapsulation efficiency, and release profiles. All formulations showed slightly negative charges and sizes ranging from 100 to 278 nm in diameter, with RVG-conjugated BSA nanoparticles exhibiting the smallest sizes. No formulation was found to be immunogenic or cytotoxic. The encapsulation efficiency was ≥75% for all nanoparticle formulations. Release studies demonstrated that BSA nanoparticle formulation exhibited a faster initial burst of release compared to PLGA particles, in addition to later sustained release. This initial burst release would be favorable for clinical dosing as therapeutic effects could be quickly established, especially in combination with additional sustained release to maintain the therapeutic effects. Our size and release profile data indicate that RVG-conjugated BSA nanoparticles are the most favorable formulation for brain delivery of oxytocin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6092754PMC
http://dx.doi.org/10.1016/j.ijpharm.2018.07.043DOI Listing

Publication Analysis

Top Keywords

nanoparticle formulations
12
encapsulation efficiency
8
rvg-conjugated bsa
8
bsa nanoparticles
8
initial burst
8
burst release
8
sustained release
8
therapeutic effects
8
release
7
oxytocin
5

Similar Publications

In this work, laponite (LAP) was used to develop the silver (Ag) based nanocomposite for improved anti-bacterial action and wound healing properties. The amphiphilic co-polymers such as PLGA polymer was embedded with the surface of LAP molecules and polyethyleneimine (PEI) through the interaction of hydrophobic binding and it was formed as LAP/PLA-PEG/PEI formulation through the coupling chemistry. The Ag nanoparticles was loaded into formulation to develop LAP/PLA-PEG/PEI/Ag nanocomposite and characterized by different analytical techniques.

View Article and Find Full Text PDF

A Sustained H/Fluorouracil-Releasing Suppository for High-efficacy and Low-Toxicity Hydrogenochemotherapy of Colon Cancer.

Adv Healthc Mater

January 2025

Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

To attenuate the intestinal toxicity of chemotherapeutic drugs from rectal suppositories and enhance their chemotherapeutic outcome is greatly significant, but maintains a challenge. In this work, a new strategy of local synergistic hydrogenochemotherapy is proposed to attenuate side effects and enhance therapeutic efficacy based on the anti-cancer selectivity and normal cells-protecting effect of H, and construct a novel anti-cancer formulation of rectal suppository (5-FU/CSN@FAG) by fatty acid glycerides (FAG) encapsulating 5-fluorouracil (5-FU, a first-line drug for colorectal cancer treatment) and cerium silicide nanoparticles (CSN) with a sustained hydrolytic H release behavior which is synchronous with 5-FU release. The 3-week treatment with the suppository once a day can not only completely eradicate colon tumors without tumor recurrence after suppository administration withdrawal, but also efficiently protect the intestinal tract from chemotherapeutic damage.

View Article and Find Full Text PDF

Since their inception, therapeutic or prophylactic vaccines have emerged as promising candidates for the prevention or treatment of infections and various diseases, including cancer and autoimmune disorders. In recent times, gold nanoparticles (GNPs) have acquired active roles in the field of vaccine development due to their intrinsic capacity to adjust and enhance the immune response. Due to their characteristics, GNPs can exert optimal effects as both delivery vehicles and adjuvants.

View Article and Find Full Text PDF

Background: Moringa peregrina, renowned for its extensive health benefits, continues to reveal its therapeutic potential through ongoing research. The synthesis of Moringa peregrina extract-selenium nanoparticles (MPE-SeNPs) has emerged as a promising approach in developing versatile therapeutic agents.

Objective: To evaluate the protective effects of MPE-SeNPs against oxidative damage and inflammation caused by HgCl2 exposure in mice.

View Article and Find Full Text PDF

Hyaluronan-coated gold nanoshells for enhanced synergistic effect and immunogenic cell response of chemo-photothermal therapy on lung cancer.

Int J Biol Macromol

January 2025

Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, National Taiwan University, No. 7, Chung-Shan South Road, Taipei 100, Taiwan. Electronic address:

Lung cancer (LC) is the predominant cause of cancer-related fatalities globally, with the highest death rates in both genders, primarily attributed to smoking. The non-kinase transmembrane cell surface glycoprotein, CD44, enhances LC cell migration and invasion, leading to drug resistance and an unfavorable prognosis. This research formulated a cisplatin-loaded gold nanoshell (HCP@GNS) integrated with hyaluronan (HCP@GNS@HA) to enhance targeting capability and realize a synergistic effect of chemo-photothermal therapy (chemo-PTT) against LC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!