Sacoglossa, the "sap sucking" sea slugs, are highly specialized herbivores and the only metazoans that exhibit kleptoplasty, the sequestration and retention of chloroplasts from algae. Plakobranchus is one of the most generalistic herbivores within this order, with as many as 12 reported "algal host" (i.e. kleptoplast source) species. However, kleptoplast diversity studies conducted on Plakobranchus to date most likely underestimated the full diversity of kleptoplast sources within the studied populations due to limitations of the molecular techniques employed. Here, we apply a high throughput sequencing technique to assess kleptoplast diversity of Plakobranchus cf. ianthobapsus' from 10 sites across the Main Hawaiian Islands during winter and summer seasons. In so doing, we effectively used P. cf. ianthobapsus as a novel sampling tool to explore diminutive algal communities, including the current distribution of the invasive alga "Avrainvillea amadelpha." Our results show that P. cf. ianthobapsus sequesters chloroplasts from 23 algal species from across the siphonous green algal order Bryopsidales. We identified "Avrainvillea amadelpha" and Codium edule as new host species for P. cf. ianthobapusus, but their rarity among the data suggests they were most likely less preferential as hosts and were possibly utilized due to low abundance or unavailability of more preferable species, and therefore a response to starvation risk. Additionally, the identification of the highly invasive siphonous green alga "A. amadelpha" as a kleptoplast source provides new fine-scale range and distribution data for this problematic species. Overall kleptoplast diversity does not differ among sites, except in a coral-dominated, (i.e. not algal dominated) environment, suggesting that siphonous algal assemblages are common in algal-dominated ecosystems in the Hawaiian Islands. Diversity dissimilarity among seasons was recovered from the majority of sites sampled, supporting the need for seasonal data collection in algal diversity assessments. This case study using metabarcoding of sacoglossan kleptoplasts provides deeper insights into these plant-animal interactions with a better understanding of host use than previous studies using traditional molecular methods and illustrates how algal diversity studies on the scale of plastids can have implications for understanding algal community structure and invasive species dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ympev.2018.07.010 | DOI Listing |
Mol Phylogenet Evol
July 2024
Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada. Electronic address:
Sci Adv
October 2023
Department of Life Science, Ben-Gurion University of the Negev, Beer Sheva, Israel.
Foraminifera are unicellular organisms that established the most diverse algal symbioses in the marine realm. Endosymbiosis repeatedly evolved in several lineages, while some engaged in the sequestration of chloroplasts, known as kleptoplasty. So far, kleptoplasty has been documented exclusively in the rotaliid clade.
View Article and Find Full Text PDFCurr Biol
September 2023
Department of Organismal Biology, Program in Systematic Biology, Uppsala University, 752 36 Uppsala, Sweden; Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden. Electronic address:
Plastid symbioses between heterotrophic hosts and algae are widespread and abundant in surface oceans. They are critically important both for extant ecological systems and for understanding the evolution of plastids. Kleptoplastidy, where the plastids of prey are temporarily retained and continuously re-acquired, provides opportunities to study the transitional states of plastid establishment.
View Article and Find Full Text PDFISME J
March 2022
LPG UMR 6112, Univ Angers, Université de Nantes, CNRS, F-49000, Angers, France.
Foraminifera are ubiquitously distributed in marine habitats, playing a major role in marine sediment carbon sequestration and the nitrogen cycle. They exhibit a wide diversity of feeding and behavioural strategies (heterotrophy, autotrophy and mixotrophy), including species with the ability of sequestering intact functional chloroplasts from their microalgal food source (kleptoplastidy), resulting in a mixotrophic lifestyle. The mechanisms by which kleptoplasts are integrated and kept functional inside foraminiferal cytosol are poorly known.
View Article and Find Full Text PDFFront Microbiol
December 2020
UMR 7144 Sorbonne Université & Centre National pour la Recherche Scientifique, «Adaptation and Diversity in Marine Environment», Team «Ecology of Marine Plankton, ECOMAP», Station Biologique de Roscoff, Roscoff, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!