Background: Pulmonary arterial hypertension (PAH) is a complex pulmonary vasculature disease characterized by remodeling of the pulmonary vessels and a persistent increase in the pulmonary vascular resistance (PVR) with a poor prognosis. Serotonin increases the expression of S100A4/Mts1, which in turn stimulates the proliferation and migration of human pulmonary artery smooth muscle cells through the interaction with RAGE (receptor for advanced glycation end products) and thus S100A4/Mts1 has been implicated in the development of PAH in vitro. Fluoxetine, a selective serotonin re-uptake inhibitor has been shown to protect against PAH. The current study was designed to test whether S100A4 and its associated proteins connected in the development of PAH in vivo as well as to investigate the involvement of those proteins in the protective effect of fluoxetine against PAH.
Methods: MCT-induced PAH models were established in Wistar rats by a single intraperitoneal injection of MCT (60 mg/kg). Fluoxetine (2 and 10 mg/kg/day) was intragastrically administered once a day for 3 weeks along with controls. The detection methods followed include Hematoxylin and Eosin (H&E) staining, immunohistochemistry, western blotting and real-time reverse transcription-polymerase chain reaction (RT-PCR).
Results: MCT induced pulmonary hypertension, pulmonary vascular remodeling, and right ventricular hypertrophy significantly increased the expressions of S100A4 and RAGE in the pulmonary arteries, lungs and right ventricle (RV). Fluoxetine dose-dependently inhibited MCT-induced pulmonary arterial hypertension, pulmonary vascular remodeling, and right ventricular hypertrophy and reduced the S100A4 and RAGE. Further analysis revealed that fluoxetine alleviated both the increase of p53, MMP13, MMP2 and MMP9 and the decrease of pp53Ser15 and MDM2 in lungs and RV tissues of MCT-induced PAH rats.
Conclusion: From the present investigation it could be concluded that S100A4/Mts1 and its associated proteins are involved in the evolution of MCT-induced PAH in rats and fluoxetine inhibits MCT-induced PAH in rats mainly through S100A4/RAGE signaling axis and involved factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcma.2018.03.013 | DOI Listing |
Phytomedicine
December 2024
Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, Coimbra 3000-548, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
Background: Pulmonary Arterial Hypertension (PAH) is characterized by pulmonary vascular remodelling, often associated with disruption of BMPR2/Smad1/5 and BMPR2/PPAR-γ signalling pathways that ultimately lead to right ventricle failure. Disruption of intercellular junctions and communication and a pro-angiogenic environment are also characteristic features of PAH. Although, current therapies improve pulmonary vascular tone, they fail to tackle other key pathological features that could prevent disease progression.
View Article and Find Full Text PDFImmunol Lett
January 2025
First Affiliated Hospital of Guangxi Medical University, China. Electronic address:
(1) BACKGROUND: Metabolic abnormalities and immune inflammation are key elements within pathogenesis of pulmonary arterial hypertension (PAH). And in PAH patients, aberrant glutamine metabolism has been observed; however, the function of glutaminase 1 (GLS1) in macrophage is still unknown. So we aims to investigate GLS1's impact upon macrophages in PAH.
View Article and Find Full Text PDFArch Physiol Biochem
January 2025
Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
This study explored the effects of melatonin on cardiac and vascular function, and redox homeostasis in model PAH. Male Wistar rats were divided into: control (CTR), monocrotaline [MCT (60 mg/kg, single dose i.p)], monocrotaline + sildenafil [MCT + SIL (50 mg/kg/day)], and monocrotaline + melatonin [MCT + MEL (10 mg/kg/day)].
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2025
Department of Physical Education, Laboratory of Exercise Biology, Federal University of Viçosa, Viçosa, Brazil.
Iran J Basic Med Sci
January 2024
Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!