Tissue acylcarnitine status in a mouse model of mitochondrial β-oxidation deficiency during metabolic decompensation due to influenza virus infection.

Mol Genet Metab

Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, United States. Electronic address:

Published: September 2018

Despite judicious monitoring and care, patients with fatty acid oxidation disorders may experience metabolic decompensation due to infection which may result in rhabdomyolysis, cardiomyopathy, hypoglycemia and liver dysfunction and failure. Since clinical studies on metabolic decompensation are dangerous, we employed a preclinical model of metabolic decompensation due to infection. By infecting mice with mouse adapted influenza and using a pair-feeding strategy in a mouse model of long-chain fatty acid oxidation (Acadvl), our goals were to isolate the effects of infection on tissue acylcarnitines and determine how they relate to their plasma counterparts. Applying statistical data reduction techniques (Partial Least Squares-Discriminant Analysis), we were able to identify critical acylcarnitines that were driving differentiation of our experimental groups for all the tissues studied. While plasma displayed increases in metabolites directly related to mouse VLCAD deficiency (e.g. C16 and C18), organs like the heart, muscle and liver also showed involvement of alternative pathways (e.g. medium-chain FAO and ketogenesis), suggesting adaptive measures. Matched correlation analyses showed strong correlations (r > 0.7) between plasma and tissue levels for a small number of metabolites. Overall, our results demonstrate that infection as a stress produces perturbations in metabolism in Acadvl that differ greatly from WT infected and Acadvl pair-fed controls. This model system will be useful for studying the effects of infection on tissue metabolism as well as evaluating interventions aimed at modulating the effects of metabolic decompensation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6626496PMC
http://dx.doi.org/10.1016/j.ymgme.2018.06.012DOI Listing

Publication Analysis

Top Keywords

metabolic decompensation
20
mouse model
8
fatty acid
8
acid oxidation
8
decompensation infection
8
effects infection
8
infection tissue
8
infection
6
metabolic
5
decompensation
5

Similar Publications

[Not Available].

Tunis Med

January 2025

Department of Gastroenterology, Charles Nicolle Hospital, Faculty of Medicine of Tunis, University of Tunis-Manar, Tunis, Tunisia.

Introduction: Acute decompensation represents a remarkable event in cirrhotic patients, particularly if it is complicated by Acute-on-Chronic Liver Failure (ACLF). Epidemiological data of ACLF are limited.

Aim: To determine the prevalence and predictive factors of ACLF in patients hospitalized for decompensated cirrhosis.

View Article and Find Full Text PDF

Background And Aims: Porto-sinusoidal vascular disorder (PSVD) is a rare vascular liver disorder characterised by specific histological findings in the absence of cirrhosis, which is poorly understood in terms of pathophysiology. While elevated hepatic copper content serves as diagnostic hallmark in Wilson disease (WD), hepatic copper content has not yet been investigated in PSVD.

Methods: Patients with a verified diagnosis of PSVD at the Medical University of Vienna and available hepatic copper content at the time of diagnosis of PSVD were retrospectively included.

View Article and Find Full Text PDF

Metabolic Dysfunction-Associated Steatotic Liver Disease.

Ann Intern Med

January 2025

Department of Medicine, Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (S.M.J.A., M.L.).

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease in the United States. It is characterized by steatosis in the liver and is potentially reversible. Risk factors include obesity, type 2 mellitus, and other metabolic disorders.

View Article and Find Full Text PDF

Mitochondrial HMG-CoA synthase deficiency.

Mol Genet Metab

January 2025

Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. Electronic address:

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) deficiency is a rare, potentially life-threatening autosomal recessive disorder resulting from mutations in the HMGCS2 gene, leading to impaired ketogenesis. We systematically reviewed the clinical presentations, biochemical and genetic abnormalities in 93 reported cases and 2 new patients diagnosed based on biochemical findings. Reported onset ages ranged from 3 months to 6 years, mostly before the age of 3.

View Article and Find Full Text PDF

Background And Aims: Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) have demonstrated long-term liver benefits in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes (T2D). However, no direct comparison between these therapies has been conducted. This study aimed to compare major adverse liver outcomes (MALOs) between GLP-1 RAs and SGLT2is in patients with MASLD and T2D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!