The role of the anode material and water matrix in the electrochemical oxidation of norfloxacin.

Chemosphere

Grupo IEC, Departamento de Ingeniería Química y Nuclear, E.T.S.I. Industriales, Universitat Politècnica de València, P.O. Box 22012, E-46071, Valencia, Spain. Electronic address:

Published: November 2018

The roles of the anode material, boron-doped diamond (BDD), with different boron (B) and substrate Silicon (Si) or Niobium (Nb) content, and one dimensionally stable anode (DSA), were evaluated in the oxidation of norfloxacin (NOR) by electrochemical advanced oxidation process (EAOP). The effect of other components in real wastewater on the performance of EAOP was also studied. The anode materials were characterized by cyclic voltammetry, regarding diamond quality, electro-generation of oxidants and NOR oxidation mechanism (direct and/or indirect). The results showed that the anode material influences on the NOR oxidation pathway, due to distinct characteristics of the substrate and the coating. Apparently, low difference in diamond-sp³/sp-carbon ratio (Si/BDD × Si/BDD) does not leads to significant differences in the EAOP. On the other hand, the variation in the sp³/sp ratio seems to be higher when Si/BDD and Nb/BDD are compared, which would explain the best current efficiency result for Si substrate. However, the Nb substrate presented a similar current efficiency and a 60% lower energy consumption. Dissolved organic matter (DOM) present in the real wastewater affect the EAOP-Nb/BDD due to HO and persulfate ions scavenged. However, when supporting electrolyte was added to a real wastewater spiked with NOR, the NOR decay reaches similar values found to the synthetic one. Due to the energy saving and mechanical properties, Nb substrate presents some technological advantages in relation to Si, which can facilitate the application to industrial levels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.07.057DOI Listing

Publication Analysis

Top Keywords

anode material
12
real wastewater
12
oxidation norfloxacin
8
current efficiency
8
oxidation
5
substrate
5
role anode
4
material water
4
water matrix
4
matrix electrochemical
4

Similar Publications

ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices.

View Article and Find Full Text PDF

Computational exploration of the electrochemical oxidation mechanism of thiocyanate catalyzed by cobalt-phthalocyanines.

Phys Chem Chem Phys

January 2025

Departamento de Química, Facultad de Ciencias, Universidad de Chile, P. O. Box 653, Las Palmeras 3425, Ñuñoa, Santiago, Chile.

In this study, we focused on the mechanism of the electrocatalytic oxidation of thiocyanate, which in traditional electrodes typically requires high overpotentials. As models for reducing these overpotentials and catalyzing the reaction, we used a set of modified cobalt phthalocyanines (CoPc), known as electrocatalysts. Using DFT calculations, we explored how modifications to CoPc by adding electron-donating and withdrawing groups and the coordination of 4-amino thiophenol impact the oxidation process.

View Article and Find Full Text PDF

A few decades ago, the technological boom revolutionized access to information, ushering in a new era of research possibilities. Electrochemical devices have recently emerged as a key scientific advancement utilizing electrochemistry principles to detect various chemical species. These versatile electrodes find applications in diverse fields, such as healthcare diagnostics and environmental monitoring.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.

View Article and Find Full Text PDF

Despite advancements in preclinical and clinical spinal cord stimulation (SCS) research, the mechanisms of SCS action remain unclear. This may result from challenges in translatability of findings between species. Our systematic review (PROSPERO: CRD42023457443) aimed to comprehensively characterize the important translational components of preclinical SCS models, including stimulating elements and stimulation specifications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!