DNA damage is presumed to be one type of stochastic macromolecular damage that contributes to aging, yet little is known about the precise mechanism by which DNA damage drives aging. Here, we attempt to address this gap in knowledge using DNA repair-deficient C. elegans and mice. ERCC1-XPF is a nuclear endonuclease required for genomic stability and loss of ERCC1 in humans and mice accelerates the incidence of age-related pathologies. Like mice, ercc-1 worms are UV sensitive, shorter lived, display premature functional decline and they accumulate spontaneous oxidative DNA lesions (cyclopurines) more rapidly than wild-type worms. We found that ercc-1 worms displayed early activation of DAF-16 relative to wild-type worms, which conferred resistance to multiple stressors and was important for maximal longevity of the mutant worms. However, DAF-16 activity was not maintained over the lifespan of ercc-1 animals and this decline in DAF-16 activation corresponded with a loss of stress resistance, a rise in oxidant levels and increased morbidity, all of which were cep-1/ p53 dependent. A similar early activation of FOXO3A (the mammalian homolog of DAF-16), with increased resistance to oxidative stress, followed by a decline in FOXO3A activity and an increase in oxidant abundance was observed in Ercc1 primary mouse embryonic fibroblasts. Likewise, in vivo, ERCC1-deficient mice had transient activation of FOXO3A in early adulthood as did middle-aged wild-type mice, followed by a late life decline. The healthspan and mean lifespan of ERCC1 deficient mice was rescued by inactivation of p53. These data indicate that activation of DAF-16/FOXO3A is a highly conserved response to genotoxic stress that is important for suppressing consequent oxidative stress. Correspondingly, dysregulation of DAF-16/FOXO3A appears to underpin shortened healthspan and lifespan, rather than the increased DNA damage burden itself.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6076207 | PMC |
http://dx.doi.org/10.1016/j.redox.2018.06.005 | DOI Listing |
Sci Rep
December 2024
Hy-Line International, 2583 240th St, PO Box 310, Dallas Center, 50063, IA, USA.
Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F population, and by selective DNA pooling (SDP) of 8 elite egg production lines.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis.
View Article and Find Full Text PDFBrain Commun
December 2024
Oslo Center for Clinical Heart Research, Department of Cardiology Ullevaal, Oslo University Hospital, Oslo 0424, Norway.
Delirium is a neuropsychiatric syndrome commonly presenting during acute illness. The pathophysiology of delirium is unknown, but neuroinflammation is suggested to play a role. In this cross-sectional study, we aimed to investigate whether cell-free DNA and markers of neutrophil extracellular traps in serum and CSF were associated with delirium and neuronal damage, assessed by neurofilament light chain.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Obstetrics and Gynecology, Hefei Maternal and Child Health Hospital, Hefei, China.
Objective: Gestational diabetes mellitus (GDM) is a common complication during pregnancy and increases the risk of metabolic diseases in offspring. We hypothesize that the poor intrauterine environment in pregnant women with GDM may lead to chromosomal DNA damage and telomere damage in umbilical cord blood cells, providing evidence of an association between intrauterine programming and increased long-term metabolic disease risk in offspring.
Methods: We measured telomere length (TL), serum telomerase (TE) activity, and oxidative stress markers in umbilical cord blood mononuclear cells (CBMCs) from pregnant women with GDM (N=200) and healthy controls (Ctrls) (N=200) and analysed the associations of TL with demographic characteristics, biochemical indicators, and blood glucose levels.
Front Endocrinol (Lausanne)
December 2024
Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Techniques for sperm cryopreservation have exhibited their potential in male fertility preservation. The use of frozen-thawed sperm in fertilization (IVF) cycles is widespread today. However, many studies reported that cryopreservation might have adverse effects on sperm DNA integrity, motility, and fertilization, probably due to cold shock, intra- and extracellular ice crystals, and excess reactive oxygen species (ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!