Anisotropy of the electron spin-lattice relaxation. PO radical in glycinium phosphite gly·HPO crystal.

J Magn Reson

Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland.

Published: September 2018

Electron spin-lattice relaxation has been measured for PO radical in glycinium phosphite gly·HPO crystal and its deuterated analogue in temperature range 40-300 K. Angular dependence of the relaxation rate was measured in three crystal planes at room temperature. The Debye cut-off temperature has been calculated as Θ = 97 K, which indicates that the temperature dependence of 1/T is governed by radical local vibrations localized in optical phonon modes range. Theories of possible 1/T angular dependence are reviewed. The anisotropy of spin-lattice relaxation rate in our crystal is assumed to be a result of local magnetic field fluctuations due to electron-proton dipolar coupling. Theoretical evaluation of 1/T were performed for coupling with protons at distances up to 0.46 nm. Not perfect agreement was found with motion correlation time τ = 2·10 s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2018.07.006DOI Listing

Publication Analysis

Top Keywords

spin-lattice relaxation
12
electron spin-lattice
8
radical glycinium
8
glycinium phosphite
8
phosphite gly·hpo
8
gly·hpo crystal
8
angular dependence
8
relaxation rate
8
anisotropy electron
4
relaxation
4

Similar Publications

Self-Diffusion of Star and Linear Polyelectrolytes in Salt-Free and Salt Solutions.

Macromolecules

January 2025

Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States.

This work explored solution properties of linear and star poly(methacrylic acids) with four, six, and eight arms (PMAA, 4PMAA, PMAA, and 8PMAA, respectively) of matched molecular weights in a wide range of pH, salt, and polymer concentrations. Experimental measurements of self-diffusion were performed by fluorescence correlation spectroscopy (FCS), and the results were interpreted using the scaling theory of polyelectrolyte solutions. While all PMAAs were pH sensitive and showed an increase in hydrodynamic radius ( ) with pH in the dilute regime, the of star polymers (measured at basic pH values) was significantly smaller for the star polyacids due to their more compact structure.

View Article and Find Full Text PDF

Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications.

ACS Mater Lett

January 2025

Department of Materials and London Centre for Nanotechnology, Imperial College London, South Kensington Campus, Exhibition Road, SW7 2AZ London, United Kingdom.

Quantum technologies using electron spins have the advantage of employing chemical qubit media with tunable properties. The principal objective of material engineers is to enhance photoexcited spin yields and quantum spin relaxation. In this study, we demonstrate a facile synthetic approach to control spin properties in charge-transfer cocrystals consisting of 1,2,4,5-tetracyanobenzene (TCNB) and acetylated anthracene.

View Article and Find Full Text PDF

Time evolution of a pumped molecular magnet-A time-resolved inelastic neutron scattering study.

Proc Natl Acad Sci U S A

January 2025

William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.

Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.

View Article and Find Full Text PDF

Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

December 2024

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.

View Article and Find Full Text PDF

Spectroscopic Signatures of Phonon Character in Molecular Electron Spin Relaxation.

ACS Cent Sci

December 2024

Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States.

Spin-lattice relaxation constitutes a key challenge for the development of quantum technologies, as it destroys superpositions in molecular quantum bits (qubits) and magnetic memory in single molecule magnets (SMMs). Gaining mechanistic insight into the spin relaxation process has proven challenging owing to a lack of spectroscopic observables and contradictions among theoretical models. Here, we use pulse electron paramagnetic resonance (EPR) to profile changes in spin relaxation rates ( ) as a function of both temperature and magnetic field orientation, forming a two-dimensional data matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!