A tour of 3D genome with a focus on CTCF.

Semin Cell Dev Biol

Zhongshan Hospital Institute of Clinical Science, Zhongshan Hospital, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China. Electronic address:

Published: June 2019

The complex three-dimensional (3D) structure of the genome plays critical roles in the maintenance of genome stability, organization, and dynamics and in regulation of gene expression for understanding molecular mechanisms and diseases. Chromatin maintains biological functions and transcriptional activities through long distance interaction and interactions between loops and enhancers-promoters. We firstly overview the architecture and biology of chromatin and loops, topologically associated domains (TADs) and interactions, and compartments and functions. We specifically focus on CCCTC-binding factor (CTCF) in 3D genome organization and function to furthermore understand the significance of CTCF biology, transcriptional regulations, interactions with cohesin, roles in DNA binding, influences of CTCF degradation, and communication with wings-apart like (Wapl) protein. We also summarize the advanced single cell approaches to further monitor dynamics of CTCF functions and structures in the maintenance of 3D genome organization and function at single cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semcdb.2018.07.020DOI Listing

Publication Analysis

Top Keywords

maintenance genome
8
genome organization
8
organization function
8
single cell
8
ctcf
5
tour genome
4
genome focus
4
focus ctcf
4
ctcf complex
4
complex three-dimensional
4

Similar Publications

A forward genetic screen identifies potassium channel essentiality in SHH medulloblastoma maintenance.

Dev Cell

January 2025

Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:

Distinguishing tumor maintenance genes from initiation, progression, and passenger genes is critical for developing effective therapies. We employed a functional genomic approach using the Lazy Piggy transposon to identify tumor maintenance genes in vivo and applied this to sonic hedgehog (SHH) medulloblastoma (MB). Combining Lazy Piggy screening in mice and transcriptomic profiling of human MB, we identified the voltage-gated potassium channel KCNB2 as a candidate maintenance driver.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Genotyping Genebank Collections: Strategic Approaches and Considerations for Optimal Collection Management.

Plants (Basel)

January 2025

United States Department of Agriculture Agricultural Research Service Small Grains and Potato Germplasm Research, Aberdeen, ID 83210, USA.

The maintenance of plant germplasm and its genetic diversity is critical to preserving and making it available for food security, so this invaluable diversity is not permanently lost due to population growth and development, climate change, or changing needs from the growers and/or the marketplace. There are numerous genebanks worldwide that serve to preserve valuable plant germplasm for humankind's future and to serve as a resource for research, breeding, and training. The United States Department of Agriculture (USDA) National Plant Germplasm System (NPGS) and the Consultative Group for International Agricultural Research (CGIAR) both have a network of plant germplasm collections scattered across varying geographical locations preserving genetic resources for the future.

View Article and Find Full Text PDF

Vitamin Metabolism and Its Dependency on Genetic Variations Among Healthy Adults: A Systematic Review for Precision Nutrition Strategies.

Nutrients

January 2025

University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland.

Background/objectives: In recent years, there has been a growing interest in precision nutrition and its potential for disease prevention. Differences in individual responses to diet, especially among populations of different ancestry, have underlined the importance of understanding the effects of genetic variations on nutrient intake (nutrigenomics). Since humans generally cannot synthesize essential vitamins, the maintenance of healthy bodily functions depends on dietary vitamin intake.

View Article and Find Full Text PDF

Developmental Proteomics Reveals the Dynamic Expression Profile of Global Proteins of (Parthenogenesis).

Life (Basel)

January 2025

State Key Laboratory Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China.

is used as an experimental animal model for the study of three-host ticks due to its special life cycle and easy maintenance in the laboratory and in its reproduction. The life cycle of goes through a tightly regulated life cycle to adapt to the changing host and environment, and these stages of transition are also accompanied by proteome changes in the body. Here, we used the isobaric tags for a relative and absolute quantification (iTRAQ) technique to systematically describe and analyze the dynamic expression of the protein and the molecular basis of the proteome of in seven differential developmental stages (eggs, unfed larvae, engorged larvae, unfed nymphs, engorged nymphs unfed adults, and engorged adults).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!