Targeting neurotrophin signaling in cancer: The renaissance.

Pharmacol Res

School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, University of Newcastle, New Lambton, NSW 2305, Australia. Electronic address:

Published: September 2018

Nerve outgrowth in the tumor microenvironment (tumor neurogenesis) has recently been shown to be essential for cancer progression and the concept of nerve dependence is emerging in oncology. Neurotrophins such as nerve growth factor (NGF) have long been identified as drivers of neurogenesis during development and regeneration, but intriguingly they were also known to be expressed in human tumors where they can stimulate cancer cell growth. Recent findings have unraveled that NGF released by cancer cells is also a driver of tumor neurogenesis, via the stimulation of NGF receptors on nerve endings. In return, nerves infiltrated in the tumor microenvironment secrete neurotransmitters, which can stimulate both the growth of tumor cells and angiogenesis. This neurotrophic role of NGF in cancer is likely to be relevant to a large variety of human malignancies, as well as other neurotrophins, and may have ramifications in cancer pain. Therefore, pharmacological interventions against neurotrophin signaling have the potential not only to target cancer cells directly, but also to inhibit neurogenesis and its stimulatory impact on cancer progression and pain.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2018.07.019DOI Listing

Publication Analysis

Top Keywords

neurotrophin signaling
8
cancer
8
tumor microenvironment
8
tumor neurogenesis
8
cancer progression
8
cancer cells
8
tumor
5
targeting neurotrophin
4
signaling cancer
4
cancer renaissance
4

Similar Publications

Tumor necrosis factor alpha (TNF-α) is a well-known pro-inflammatory cytokine originally recognized for its ability to induce apoptosis and cell death. However, recent research has revealed that TNF-α also plays a crucial role as a mediator of cell survival, influencing a wide range of cellular functions. The signaling of TNF-α is mediated through two distinct receptors, TNFR1 and TNFR2, which trigger various intracellular pathways, including NF-κB, JNK, and caspase signaling cascades.

View Article and Find Full Text PDF

Nerve injuries can be tantamount to severe impairment, standard treatment such as the use of autograft or surgery comes with complications and confers a shortened relief. The mechanism relevant to the regeneration of the optic nerve seems yet to be fully uncovered. The prevailing rate of vision loss as a result of direct or indirect insult on the optic nerve is alarming.

View Article and Find Full Text PDF

Empagliflozin Mitigates PTZ-Induced Seizures in Rats: Modulating Npas4 and CREB-BDNF Signaling Pathway.

J Neuroimmune Pharmacol

January 2025

Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.

Empagliflozin (EMPA) is one of the sodium/glucose cotransporter 2 (SGLT2) inhibitors that has been recently approved for the treatment of diabetes mellitus type II. Recently, EMPA has shown protective effects in different neurological disorders, besides its antidiabetic activity. Kindling is a relevant model to study epilepsy and neuroplasticity.

View Article and Find Full Text PDF

Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction.

View Article and Find Full Text PDF

Exiting a germinal zone (GZ) initiates a cascade of events that promote neuronal maturation and circuit assembly. Developing neurons and their progenitors must interpret various niche signals-such as morphogens, guidance molecules, extracellular matrix components, and adhesive cues-to navigate this region. How differentiating neurons in mouse brains integrate and adapt to multiple cell-extrinsic niche cues with their cell-intrinsic machinery in exiting a GZ is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!