Effects of aging, hypertension and diabetes on the mouse brain and heart vasculomes.

Neurobiol Dis

Neuroprotection Research Laboratories and Clinical Proteomics Research Center, Departments of Neurology and Radiology, MA, General Hospital, Harvard Medical School, USA. Electronic address:

Published: June 2019

The emerging concept of the vasculome suggests that microvessels contribute to function and dysfunction in every organ. In the brain, aging and comorbidities such as hypertension and diabetes significantly influence a wide variety of neurodegenerative and cerebrovascular disorders, but the underlying mechanisms are complex and remain to be fully elucidated. Here, we hypothesize that aging, hypertension and diabetes perturb gene networks in the vasculome. Microvascular endothelial cells were isolated from mouse brain and heart, and their transcriptomes were profiled with microarrays. For aging, we compared 5 mo vs 15 mo old C57BL6 male mice. For hypertension, we compared 4 mo old normotensive BPN vs hypertensive BPH male mice. For diabetes, we compared 3 mo old diabetic db/db mice with their matching C57BLKS controls. Four overall patterns arose from these comparative analyses. First, organ differences between brain and heart were larger than effects of age and co-morbidities per se. Second, across all conditions, more genes were altered in the brain vasculome compared with the heart. Third, age, hypertension and diabetes perturbed the brain and heart vasculomes in mostly distinct ways, with little overlap. Fourth, nevertheless, a few common pathways were detected in the brain, expressed mostly as a suppression of immune response. These initial drafts of the brain and heart vasculomes in the context of aging and vascular comorbidities should provide a framework for designing future investigations into potential targets and mechanisms in CNS disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8112192PMC
http://dx.doi.org/10.1016/j.nbd.2018.07.021DOI Listing

Publication Analysis

Top Keywords

brain heart
20
hypertension diabetes
16
heart vasculomes
12
aging hypertension
8
brain
8
mouse brain
8
male mice
8
heart
6
hypertension
5
diabetes
5

Similar Publications

Gene enhancers often form long-range contacts with promoters, but it remains unclear if the activity of enhancers and their chromosomal contacts are mediated by the same DNA sequences and recruited factors. Here, we study the effects of expression quantitative trait loci (eQTLs) on enhancer activity and promoter contacts in primary monocytes isolated from 34 male individuals. Using eQTL-Capture Hi-C and a Bayesian approach considering both intra- and inter-individual variation, we initially detect 19 eQTLs associated with enhancer-eGene promoter contacts, most of which also associate with enhancer accessibility and activity.

View Article and Find Full Text PDF

LYVE1 and IL1RL1 are mitochondrial permeability transition-driven necrosis-related genes in heart failure.

Int J Biochem Cell Biol

January 2025

Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, China. Electronic address:

Background: Heart failure is linked to increased hospitalization and mortality. Mitochondrial permeability transition-driven necrosis is associated with cardiovascular diseases, but its role in heart failure is unclear. This study aimed to identify and validate genes related to mitochondrial permeability transition-driven necrosis in heart failure, potentially leading to new drug targets and signaling pathways.

View Article and Find Full Text PDF

Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.

Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.

View Article and Find Full Text PDF

Glutamate-mediated antidepressant effects of Jieyu I Formula via modulation of PFC-LHb circuitry in lipopolysaccharide-induced depression model.

J Ethnopharmacol

January 2025

State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China; Chinese Medicine Guangdong Laboratory, Guangdong Hengqin, 519031, China. Electronic address:

Ethnopharmacological Relevance: Jieyu I Formula (JY-I) is an improved version of the classic formula "Sini San" documented in the books Shanghan Lun, which is known for regulating the liver and treating depression. However, the disturbance of neuronal signal transmission in the neural circuit of the brain is closely related to the occurrence of depression, yet its neural mechanism is still unclear.

Aim Of The Study: This study aimed to observe the antidepressant effect of JY-I on depressed mice induced by lipopolysaccharide and its underlying central nervous system mechanisms, focusing on the prefrontal cortex (PFC) to lateral habenular nucleus (LHb) neural circuit in the depressed mice model.

View Article and Find Full Text PDF

Importance: In the Atrial Cardiopathy and Antithrombotic Drugs in Prevention After Cryptogenic Stroke (ARCADIA) randomized clinical trial, anticoagulation did not prevent recurrent stroke among patients with a recent cryptogenic stroke and atrial cardiopathy. It is unknown whether anticoagulation prevents covert infarcts in this population.

Objective: To test the use of apixaban vs aspirin for prevention of nonlacunar covert infarcts after cryptogenic stroke in patients with atrial cardiopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!