Characterization of filament-forming CTP synthases from Arabidopsis thaliana.

Plant J

Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663, Kaiserslautern, Germany.

Published: October 2018

Cytidine triphosphate (CTP) is essential for DNA, RNA and phospholipid biosynthesis. De novo synthesis is catalyzed by CTP synthases (CTPS). Arabidopsis encodes five CTPS isoforms that unanimously share conserved motifs found across kingdoms, suggesting all five are functional enzymes. Whereas CTPS1-4 are expressed throughout Arabidopsis tissues, CTPS5 reveals exclusive expression in developing embryos. CTPS activity and substrates affinities were determined for a representative plant enzyme on purified recombinant CTPS3 protein. As demonstrated in model organisms such as yeast, fruit fly and mammals, CTPS show the capacity to assemble into large filaments called cytoophidia. Transient expression of N- and C-terminal YFP-CTPS fusion proteins in Nicotiana benthamiana allowed to monitor such filament formation. Interestingly, CTPS1 and 2 always appeared as soluble proteins, whereas filaments were observed for CTPS3, 4 and 5 independent of the YFP-tag location. However, when similar constructs were expressed in Saccharomyces cerevisiae, no filaments were observed, pointing to a requirement for organism-specific factors in vivo. Indications for filament assembly were also obtained in vitro when recombinant CTPS3 protein was incubated in the presence of CTP. T-DNA-insertion mutants in four CTPS loci revealed no apparent phenotypical alteration. In contrast, CTPS2 T-DNA-insertion mutants did not produce homozygous progenies. An initial characterization of the CTPS protein family members from Arabidopsis is presented. We provide evidence for their involvement in nucleotide de novo synthesis and show that only three of the five CTPS isoforms were able to form filamentous structures in the transient tobacco expression system. This represents a striking difference from previous observations in prokaryotes, yeast, Drosophila and mammalian cells. This finding will be highly valuable to further understand the role of filament formation to regulate CTPS activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821390PMC
http://dx.doi.org/10.1111/tpj.14032DOI Listing

Publication Analysis

Top Keywords

ctp synthases
8
novo synthesis
8
ctps
8
ctps isoforms
8
ctps activity
8
recombinant ctps3
8
ctps3 protein
8
filament formation
8
filaments observed
8
t-dna-insertion mutants
8

Similar Publications

Cytoophidium complexes resonate with cell fates.

Cell Mol Life Sci

January 2025

School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.

Metabolism is a fundamental characteristic of life. In 2010, we discovered that the metabolic enzyme CTP synthase (CTPS) can assemble a snake like structure inside cells, which we call the cytoophidium. Including CTPS, an increasing number of metabolic enzymes have been found to form cytoophidia in cells.

View Article and Find Full Text PDF

Pyrimidine synthesis enzyme CTP synthetase 1 suppresses antiviral interferon induction by deamidating IRF3.

Immunity

January 2025

Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA. Electronic address:

Metabolism is typically contextualized in conjunction with proliferation and growth. The roles of metabolic enzymes beyond metabolism-such as in innate immune responses-are underexplored. Using a focused short hairpin RNA (shRNA)-mediated screen, we identified CTP synthetase 1 (CTPS1), a rate-limiting enzyme of pyrimidine synthesis, as a negative regulator of interferon induction.

View Article and Find Full Text PDF

Histone lactylation is crucial in a variety of physiopathological processes; however, the function and mechanism of histone lactylation in endometriosis remain poorly understood. Therefore, the objective of this investigation was to illuminate the function and mechanism of histone lactylation in endometriosis. Immunohistochemistry was used to investigate the expression of histone lactylation.

View Article and Find Full Text PDF

In multiple myeloma, as in B-cell malignancies, mono- and especially bi-allelic gene inactivation is a high-risk factor for treatment resistance, and there are currently no therapies specifically targeting p53 deficiency. In this study, we evaluated if the loss of cell cycle control in p53-deficient myeloma cells would confer a metabolically actionable vulnerability. We show that CTP synthase 1 (), which encodes a CTP synthesis rate-limiting enzyme essential for DNA and RNA synthesis in lymphoid cells, is overexpressed in samples from myeloma patients displaying a high proliferation rate (high expression) or a low p53 score (synonymous with deletion and/or mutation).

View Article and Find Full Text PDF

Differential Cytoophidium Assembly between and .

Int J Mol Sci

September 2024

School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.

The de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by the enzyme CTP synthase (CTPS), which is known to form cytoophidia across all three domains of life. In this study, we use the budding yeast and the fission yeast as model organisms to compare cytoophidium assembly under external environmental and intracellular CTPS alterations. We observe that under low and high temperature conditions, cytoophidia in fission yeast gradually disassemble, while cytoophidia in budding yeast remain unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!