AI Article Synopsis

Article Abstract

We report the temporal intensity correlation (TIC) of scattered photons (SPs) generated via a two-photon transition in a Doppler-broadened warm atomic vapor of the 5S - 5P - 5D transition of Rb atoms. Through the investigation of the TICs of the SPs obtained via both one- and two-photon transitions, the second-order correlation values g(0) (i.e., at zero time delay) of both SPs were measured as approximately 1.75, respectively. The widths of the g(τ) spectra were measured as 26 ns (corresponding to the natural lifetime of the 5P state) for the one-photon transition and 1.8 ns (corresponding to the Doppler width of the warm atomic vapor) for the two-photon transition. We confirmed that the coherence time of the SPs can vary in accordance with the photons emitted from the one- or two-photon transitions in the ladder-type atomic system. The correlated SPs obtained via the two-photon transition contributed to almost all the velocity classes of the atoms in the Doppler-broadened atomic ensemble.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054669PMC
http://dx.doi.org/10.1038/s41598-018-29340-7DOI Listing

Publication Analysis

Top Keywords

two-photon transition
16
warm atomic
12
atomic vapor
12
temporal intensity
8
intensity correlation
8
one- two-photon
8
two-photon transitions
8
two-photon
6
transition
6
atomic
5

Similar Publications

Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime.

View Article and Find Full Text PDF

Detection of trace gases, such as radioactive carbon dioxide, clumped isotopes, and reactive radicals, is of great interest and poses significant challenges in various fields. Achieving both high selectivity and high sensitivity is essential in this context. We present a highly selective molecular spectroscopy method based on comb-locked, mid-infrared, cavity-enhanced, two-photon absorption.

View Article and Find Full Text PDF

Conversion of silent synapses to AMPA receptor-mediated functional synapses in human cortical organoids.

Neurosci Res

December 2024

Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:

Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.

View Article and Find Full Text PDF

Near-infrared (NIR) emitters with high two-photon absorption (2PA) cross-sections are of interest to enable imaging in the tissue transparency windows. This study explores the potential of DNA-stabilized silver nanoclusters (Ag -DNAs) as water-soluble two-photon absorbers. We investigate 2PA of four different atomically precise Ag -DNA species with far-red to NIR emission and varying nanocluster and ligand compositions.

View Article and Find Full Text PDF

Laser excitation of the 1-2 transition in singly-ionized helium.

Commun Phys

December 2024

LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.

Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!