Ocean acidification will potentially inhibit calcification by marine organisms; however, the response of the most prolific ocean calcifiers, coccolithophores, to this perturbation remains under characterized. Here we report novel chemical constraints on the response of the widespread coccolithophore species Ochrosphaera neapolitana (O. neapolitana) to changing-CO conditions. We cultured this algae under three pCO-controlled seawater pH conditions (8.05, 8.22, and 8.33). Boron isotopes within the algae's extracellular calcite plates show that this species maintains a constant pH at the calcification site, regardless of CO-induced changes in pH of the surrounding seawater. Carbon and oxygen isotopes in the algae's calcite plates and carbon isotopes in the algae's organic matter suggest that O. neapolitana utilize carbon from a single internal dissolved inorganic carbon (DIC) pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO relative to HCO enters the internal DIC pool under acidified conditions. These two observations may explain how O. neapolitana continues calcifying and photosynthesizing at a constant rate under different atmospheric-pCO conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6054640 | PMC |
http://dx.doi.org/10.1038/s41467-018-04463-7 | DOI Listing |
Sci Rep
January 2025
Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.
The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.
View Article and Find Full Text PDFFood web architecture and trophic interactions between organisms can be studied using ratios of naturally occurring stable isotopes of carbon (C/C) and nitrogen (N/N). Most studies, however, focused on free-living organisms, but recently, there has been growing interest in understanding trophic interactions of parasites. The crustacean ectoparasite is a well-studied parasite of freshwater teleost fish, which has low host specificity and a cosmopolitan distribution.
View Article and Find Full Text PDFSci Total Environ
January 2025
Geosciences and Environment Toulouse, Université de Toulouse, CNRS, Université Toulouse 3 Paul Sabatier (UPS), 14 Avenue Edouard Belin, 31400 Toulouse, France; BIO-GEO-CLIM Laboratory, Tomsk State University, 36 Lenin Ave, 634050, Tomsk, Russia. Electronic address:
Copper (Cu) and zinc (Zn) are two trace metals that exhibit both limiting and toxic effects on aquatic microorganisms. However, in contrast to good knowledge of these metal interactions with individual microbial cultures, the biofilm, complex natural consortium of microorganisms, remains poorly understood with respect to its control on Cu and Zn in the aquatic environments. Towards constraining the magnitude and mechanisms of Cu and Zn isotope fractionation in the presence of phototrophic biofilms composed of different proportion of diatoms, green algae and cyanobacteria, we studied long-term growth in a rotating annular bioreactor and quantified the uptake of metals and their isotope fractionation at environmentally-relevant Cu and Zn concentrations.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
Carbon-14 (C-14) has been a major contributor to the human radioactive exposure dose, as it is released into the environment from the nuclear industry in larger quantities compared to other radionuclides. This most abundant nuclide enters the biosphere as organically bound C-14 (OBC-14), posing a potential threat to public health. Yet, it remains unknown how this relatively low radiotoxic nuclide induces health risks via chemical effects, such as isotope effect.
View Article and Find Full Text PDFBr J Nutr
December 2024
Department of Odontostomatologic and Specialized Clinical Sciences, Polytechnic University of Marche, Ancona, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!