In vitro studies using target and effecter cells of mineral-induced cancers have been critical in determining the mechanisms of pathogenesis as well as the properties of elongated mineral particles (EMPs) important in eliciting these responses. Historically, in vitro models of 'mutagenesis' and immortalized cell lines were first used to test the theory that EMPs were mutagenic to cells, and 'genotoxicity', as defined as damage to DNA often culminating in cell death, was observed in a dose-dependent fashion as responses of many cell types to a number of EMPs. As two-stage and multi-step models of cancer development emerged in the 1970s and 1980s, differentiated 3D organ cultures and monolayers of lung epithelial and mesothelial cells were used to probe the mechanisms of cancer development. These studies demonstrated a spectrum of pre-neoplastic changes, including hyperplasia and squamous metaplasia, in response to long (>5 μm in length) needlelike EMPs whereas long, curly chrysotile fibers caused acute cytotoxicity. Shorter fibers of many types were taken up by cells and encompassed in phagolysosomes. Comparative studies using chemical carcinogens showed that chemical agents interacted directly with DNA whereas long EMPs appeared to be promoters of cancers via a number of mechanisms such as inflammation, generation of oxidants, and instigation of cell division. The multitude of these signaling cascades and epigenetic mechanisms of both lung cancers and mesotheliomas have been most recently studied in normal or telomerase immortalized human cells. Importantly, many of these pathways are elicited by long, straight amphibole asbestos fibers or carbon nanotubes in rodents and not by short (<5 μm) EMPs, fragments, or nonfibrous particles. However, the chemistry and surface properties of long fibers are also critical in cell responses to minerals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2018.07.018 | DOI Listing |
Glycoconj J
January 2025
Department of Molecular Nutrition, CSIR-CFTRI, Mysuru, 570020, India.
Glycosaminoglycans (GAGs) are essential bone extracellular matrix molecules that regulate osteoblast differentiation. Numerous studies have explored endogenous and exogenous GAG osteoanabolic activities using appropriate in vitro and in vivo models. However, GAGs' underlying the mechanism of action and structure-function relationships need to be elucidated in detail.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
June 2024
MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, China.
Autosomal dominant polycystic kidney disease (ADPKD) is a dominant genetic disorder caused primarily by mutations in the PKD1 gene, resulting in the formation of numerous cysts and eventually kidney failure. However, there are currently no gene therapy studies aimed at correcting PKD1 gene mutations. In this study, we identified two mutation sites associated with ADPKD, c.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Ovarian Physiopathology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina.
Purpose: This study aimed to evaluate the long-term impact of mild COVID-19 infection and COVID-19 vaccination on ovarian function in patients undergoing assisted reproductive technology (ART). Specifically, we assessed ovarian outcomes between 9 and 18 months post-infection and investigated the effects of COVID-19 vaccines (inactivated virus and adenovirus) on reproductive parameters.
Methods: The study included two objectives: (a) examining ovarian function in post-COVID-19 patients (9-18 months post-infection) compared to a control group and (b) comparing reproductive outcomes in vaccinated versus unvaccinated patients.
J Assist Reprod Genet
January 2025
Reproductive Medical Center, The Second Hospital of Jilin University, Changchun, 130000, China.
The objective of this study is to explore the impact of the use of granulocyte-macrophage colony-stimulating factor (GM-CSF) in female undergoing assisted reproductive technology (ART) on reproductive outcomes. A literature search was performed using electronic databases (PubMed, EMBASE, Web of Science, CNKI, Wanfang data, Geen Medical, and Cochrane Library). Risk ratio (RR), odds ratio (OR), and mean difference (MD) with 95% confidence intervals (CI) for various outcomes were presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!