A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro screening of cell bioenergetics to assess mitochondrial dysfunction in drug development. | LitMetric

In vitro screening of cell bioenergetics to assess mitochondrial dysfunction in drug development.

Toxicol In Vitro

UCB BioPharma SPRL, Developmental Sciences, Investigative Toxicology, Chemin du Foriest, 1420 Braine-l'Alleud, Belgium; Present address: L'Oreal Research & Innovation Center, Paris, France. Electronic address:

Published: October 2018

Drug-induced mitochondrial toxicity is considered as a common cellular mechanism that can induce a variety of organ toxicities. In the present manuscript, 17 in vitro mitochondrial toxic drugs, reported to induce Drug-Induced Liver Injury (DILI) and 6 non-mitochondrial toxic drugs (3 with DILI and 3 without DILI concern), were tested in HepG2 cells using a bioenergetics system. The 17 mitochondrial toxic drugs represent a wide variety of mitochondrial dysfunctions as well as DILI and include 4 pairs of drugs which are structurally related but associated with different DILI concerns in human. Cell bioenergetics were measured using the XF96e analyzer which simultaneous monitor oxygen consumption rate (OCR) and extracellular acidification rate (ECAR), indirect measurements of oxidative phosphorylation and glycolysis, respectively. OCR associated with ATP production, maximal respiration, proton leak and spare respiratory capacity, were also assessed. Duplicate experiments resulted in a sensitivity of 82% (14/17) and specificity of 83% (5/6). The addition of stressors improved specificity considerably. Cut-offs, statistics and rules are clearly discussed to facilitate the use of this assay for screening purposes. Overall, the authors consider that this assay should be part of the battery of safety screening assays at early stages of drug development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tiv.2018.07.012DOI Listing

Publication Analysis

Top Keywords

toxic drugs
12
cell bioenergetics
8
drug development
8
mitochondrial toxic
8
mitochondrial
5
dili
5
vitro screening
4
screening cell
4
bioenergetics assess
4
assess mitochondrial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!