Objectives: Although amiodarone may cause neurotoxicity that can affect patient outcomes when used during cardiopulmonary resuscitation (CPR), it has been commonly prescribed during CPR. This study investigated the possible neurotoxic effects of amiodarone in a rat model of transient forebrain ischemia.
Design: A prospective laboratory animal study was carried out.
Setting: Animal laboratory.
Materials: Male Sprague-Dawley rats.
Intervention: Eight minutes of forebrain ischemia was induced in rats by bilateral carotid occlusion and hypotension (mean arterial pressure=35mmHg) under isoflurane (1.5%) anesthesia. Amiodarone (0, 50, 100 and 150mg/kg) with saline was injected intraperitoneally 10min after ischemia. Rats given 0mg/kg of amiodarone were used as saline-treated controls. Sham operated rats received no treatment.
Variables Of Interest: Animals were evaluated neurologically on postoperative days 4-7, and histologically after a one-week recovery period.
Results: The greatest improvement in water maze test performance corresponded to the sham operated group (p=0.015 vs. saline-treated controls). No differences in performance were seen in amiodarone-treated rats compared with saline-treated controls. In the control group, 45% of the CA1 hippocampal neurons survived, compared with 78% in the sham operated group (p=0.009). Neuron survival after ischemia in the amiodarone treatment groups (50, 100 and 150mg/kg) (58%, 40% and 36%, respectively) and in the control rats did not differ significantly.
Conclusions: The administration of amiodarone immediately after transient forebrain ischemia did not worsen spatial cognitive function or neuronal survival in the hippocampal CA1 region in rats. The current results must be applied with caution in humans. However, they indicate that the potential neurotoxicity induced by amiodarone during resuscitation after cardiac arrest may be negligible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.medin.2018.05.007 | DOI Listing |
J Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Int J Mol Sci
January 2025
Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia.
Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).
View Article and Find Full Text PDFSci Rep
January 2025
Hatherly Laboratories, Department of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK.
Beta-frequency oscillations (20-30 Hz) are prominent in both human and rodent electroencephalogram (EEG) recordings. Discrete epochs of beta (or Beta2) oscillations are prevalent in the hippocampus and other brain areas during exploration of novel environments. However, little is known about the spatial distribution and temporal relationships of beta oscillations across the cortex in response to novel contexts.
View Article and Find Full Text PDFCommun Biol
January 2025
Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
During spatial learning, subjects progressively adjust their navigation strategies as they acquire experience. The medial prefrontal cortex (mPFC) supports this operation, for which it may integrate information from distributed networks, such as the hippocampus (HPC) and the posterior parietal cortex (PPC). However, the mechanism underlying the prefrontal coordination with HPC and PPC during spatial learning is poorly understood.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Neuroscience, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
Homeostatic sleep regulation is essential for optimizing the amount and timing of sleep for its revitalizing function, but the mechanism underlying sleep homeostasis remains poorly understood. Here, we show that optogenetic activation of locus coeruleus (LC) noradrenergic neurons immediately increased sleep propensity following a transient wakefulness, contrasting with many other arousal-promoting neurons whose activation induces sustained wakefulness. Fiber photometry showed that repeated optogenetic or sensory stimulation caused a rapid reduction of calcium activity in LC neurons and steep declines in noradrenaline/norepinephrine (NE) release in both the LC and medial prefrontal cortex (mPFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!