Surface-enhanced Raman chemical imaging (SER-CI) is a highly sensitive analytical tool recently used in the pharmaceutical field owing to the possibility to obtain high sensitivity along with spatial information. However, the covering method of the pharmaceutical samples such as tablets with metallic nanoparticles is a major issue for SER-CI analyses due to the difficulty to obtain a homogeneous covering of tablet surface with the SERS substrates. In this context, a spray-coating method was proposed in order to fully exploit the potential of SER-CI. A homemade apparatus has been developed from an electrospray ionization (ESI) probe in order to cover the pharmaceutical tablets with the colloidal suspension in a homogeneous way. The silver substrate was pulled through the airbrush by a syringe pump which was then nebulized into small droplets due to the contact of the solution with the gas flow turbulence. A robust optimization of the process was carried out by adjusting experimental parameters such as the liquid flow rate and the spraying time. Besides, the performances of this spraying technique were compared with two others covering methods found in the literature which are drop casting and absorption coating. A homogeneity study, conducted by SER-CI and matrix assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) applied to the different covering techniques was performed. The influence of the metallic nanoparticles deposit on soluble compounds was also investigated in order to highlight the advantages of using this new spray coating approach.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2018.06.037 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Korea.
Advancements in printing techniques are essential for fabricating next-generation displays. Lead halide perovskites demonstrate great potential as light emitters of solution-processed light-emitting diodes (LEDs). In particular, the perovskite/polymer composite emitters exhibit exceptional luminescent characteristics, mechanical flexibility, and environmental stability due to the improved film morphologies and defect passivation achieved through the introduction of polymer additives.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.
We report a new approach for fabricating gate-tunable thermal emissivity surfaces by spraying them on graphene ink. The devices consist of a multilayer graphene (MLG)/porous alumina membrane/gold stack, in which the MLG is deposited by spraying the graphene ink onto the porous membrane using an airbrush. The graphene ink consists of μm-sized flakes of MLG suspended in a solution of polyvinylpyrrolidone and ethylene glycol.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, 170 Kessels Road, Brisbane, QLD 4111, Australia.
Surface wettability, the interaction between a liquid droplet and the surface it contacts, plays a key role in influencing droplet behavior and flow dynamics. There is a growing interest in designing surfaces with tailored wetting properties across diverse applications. Advanced fabrication techniques that create surfaces with unique wettability offer significant innovation potential.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China.
Surface fogging affects the light transmittance of various transparent materials and poses potential safety hazards. Superhydrophilic TiO surfaces can effectively prevent fogging by promoting continuous water film formation; however, they often struggle to maintain stable hydrophilicity and adhesion on plastic films. Self-cleaning and antifogging coatings on plastic substrates are crucial for applications requiring long-term clarity and minimal maintenance costs.
View Article and Find Full Text PDFSci Technol Adv Mater
November 2024
Institute for Functional Intelligent Materials, Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!