Pressure sensitive paints (PSP) containing oxygen probes were primarily used to measure air pressure. In this perspective, a polymerizable methacrylate-derived tetraphenylporphinato platinum(II) (PtTPP-MA) monomer was copolymerized with acrylic/vinyl monomers to produce four different copolymers. Octafluoropentyl methacrylate (OCFPM) and pentafluorophenyl acrylate (PFPA) were used as fluorinated monomers. Methyl methacrylate (MMA) and styrene (S) were used as non-fluorinated monomers. The structures and physical properties of the polymers were confirmed by H NMR, F NMR, GPC, and DSC. Experimental conditions were optimized to get fine nanofibers. Pressure sensing electrospun membranes and spin coated films were fabricated. Nanofibers showed fast response and good sensitivity towards gaseous oxygen. The influence of types of substrate and polymer natures on response time, oxygen sensitivity, and pressure responses were deliberated. Among our synthesized copolymers, poly(PS-co-PFPA-co-OCFPM-co-PtTPPMA) (Polymer P3) showed fast response time and good pressure sensitivity both as spin coated films and nanofibers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2018.05.067DOI Listing

Publication Analysis

Top Keywords

spin coated
12
coated films
12
pressure sensitive
8
sensitive paints
8
fast response
8
response time
8
pressure
6
electrospun nanofibers
4
nanofibers spin
4
films prepared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!