The combination of emerging antibiotic resistance and lack of discovery of new antibiotic classes poses a threat to future human welfare. Antibiotics are administered to livestock at a large scale and these may enter the environment by the spreading of manure on agricultural fields. They may leach to groundwater, especially in the Netherlands which has some of the most intensive livestock farming and corresponding excessive manure spreading in the world. This study investigates the presence of antibiotics in groundwater in two regions with the most intensive livestock farming in the Netherlands. If so, the hydrochemical conditions were further elaborated. Ten multi-level wells with in total 46 filters were sampled, focusing on relatively young, previously age-dated groundwater below agricultural fields. Twenty-two antibiotics were analyzed belonging to the following antibiotic groups: tetracyclines, sulfonamides, trimethoprims, β-lactams, macrolides, lincosamides, quinolones, nitrofurans and chloramphenicol. The samples were analyzed for these antibiotics by LC-MS/MS ESI-POS/NEG (MRM) preceded by solid phase extraction which resulted in importantly low detection limits. Six antibiotics were found above detection limits in 31 filters in seven wells: sulfamethazine, sulfamethoxazole, lincomycin, chloramphenicol, ciprofloxacin, and sulfadiazine. The concentrations range from 0.3 to 18 ng L. Sulfonamides were detected at all measured depths down to 23 meters below surface level with apparent groundwater ages up to 40 years old. No antibiotics were detected below the nitrate/iron redox cline, which suggests that the antibiotics might undergo degradation or attenuation under nitrate-reducing redox conditions. This study provides proof that antibiotics are present in groundwater below agricultural areas in the Netherlands due to the spreading of animal manure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2018.05.085 | DOI Listing |
Plants (Basel)
January 2025
School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T23 TK30 Cork, Ireland.
As a result of intensive agriculture, large quantities of liquid wastewaters are produced. Dairy soiled water (DSW) is produced in large volumes during the milking process of cattle. It comprises essential plant nutrients such as nitrogen, phosphorus, and potassium.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural Economics and Animal Production, School of Agricultural and Environmental Sciences, University of Limpopo, Private Bag X1106, Sovenga 0727, Limpopo, South Africa.
The objective of this study was to determine the relationship between the MRF gene family members and slaughter characteristics in Saanen kids with varying slaughter weights. Twenty male kids of the Turkish Saanen breed were individually fattened for 60 days after weaning under an intensive management system. The kids were divided into two groups: low slaughter weight (L; = 11; ≤29 kg) and high slaughter weight (H; = 13; >29) at the end of the fattening.
View Article and Find Full Text PDFPoult Sci
January 2025
Hebei Agricultural University, Baoding, Hebei 071000, China; Key Laboratory of Intelligent Equipment and New Energy Utilization in Livestock and Poultry Farming of Hebei Province, Baoding, Hebei 071000, China.
At present, in the context of the highly intensive development of livestock and poultry breeding, digital management is becoming increasingly important, and digital twin systems are gradually being applied. To solve the contradiction between data acquisition and sensor network congestion, a virtual acquisition method based on historical data and real-time reference of point data is proposed when constructing a digital twin system. Firstly, computational fluid dynamics (CFD) simulation was used to analyze and determine the temperature distribution and environmental characteristics inside the layer house, and the collection area was preliminarily divided according to the CFD simulation results.
View Article and Find Full Text PDFToxics
December 2024
Research Centre for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Antibiotic resistance genes (ARGs) are emerging as significant environmental contaminants, posing potential health risks worldwide. Intensive livestock farming, particularly swine production, is a primary contributor to the escalation of ARG pollution. In this study, we employed metagenomic sequencing and quantitative polymerase chain reaction to analyze the composition of microorganisms and ARGs across four vectors in a typical swine fattening facility: dung, soil, airborne particulate matter (PM), and fodder.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
UCIBIO-Applied Molecular Biosciences Unit, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Paredes, Portugal.
Animals destined for human consumption play a key role in potentially transmitting bacteria carrying antibiotic resistance genes. However, there is limited knowledge about the carriage of antibiotic-resistant bacteria in native breeds. We aimed to characterize the phenotypic profiles and antibiotic resistance genes in isolated from bovines, including three native Portuguese bovine breeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!