Introduction: Recent studies have provided evidence that patients with myotonic dystrophy (DM) are at excess risk of cancer. However, inconsistencies regarding affected anatomic sites persist.

Methods: We performed a meta-analysis of cancer risk in DM, searching among studies published between January 1, 1990 and December 31, 2016. Eligible studies were full reports of DM cohorts with site-specific risks.

Results: The analysis included 5 studies, comprising 2,779 patients. Risk estimates for cancers of the endometrium and cutaneous melanoma were reported in all studies. The pooled standardized incidence ratio (pSIRs) for endometrial cancer was 7.48 (95% confidence interval [CI] 4.72-11.8) and for cutaneous melanoma was 2.45 (95% CI 1.31-4.58). Among cancers reported in 4 of 5 studies, elevated risks were observed for thyroid (pSIR = 8.52, 95% CI 3.62-20.1), ovarian (pSIR = 5.56, 95% CI 2.99-10.3), testicular (pSIR = 5.95, 95% CI 2.34-15.1), and colorectal (pSIR = 2.2, 95% CI 1.39-3.49) cancers.

Discussion: Our data refine the DM cancer phenotype, which may guide patient clinical management and inform plans for molecular investigations to understand DM-related carcinogenesis. Muscle Nerve 58: 517-522, 2018.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6173974PMC
http://dx.doi.org/10.1002/mus.26194DOI Listing

Publication Analysis

Top Keywords

cancer phenotype
8
myotonic dystrophy
8
cutaneous melanoma
8
reported studies
8
studies
6
95%
6
cancer
5
phenotype myotonic
4
dystrophy patients
4
patients meta-analysis
4

Similar Publications

Prognostic significance of serum complement activation, neutrophil extracellular traps and extracellular DNA in newly diagnosed epithelial ovarian cancer.

Gynecol Oncol

January 2025

Departments of Internal Medicine and Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America; Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America.

Purpose: We observed that the tumor microenvironment (TME) in metastatic epithelial ovarian cancer (EOC) and in other solid tumors can reprogram normal neutrophils to acquire a complement-dependent suppressor phenotype characterized by inhibition of stimulated T cell activation. This study aims to evaluate whether serum markers of neutrophil activation and complement at diagnosis of EOC would be associated with clinical outcomes.

Experimental Design: We conducted a two-center prospective study of patients with newly diagnosed EOC (N = 188).

View Article and Find Full Text PDF

Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).

View Article and Find Full Text PDF

Elevated LINC00115 expression correlates with aggressive endometrial cancer phenotypes via JAK/STAT pathway modulation.

Hum Mol Genet

January 2025

Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of CM, No. 19, Renmin Road, Jinshui District, Zhengzhou City, Henan Province, China.

This study systematically explores the oncogenic role of the long non-coding RNA (lncRNA) LINC00115 in endometrial cancer (EC) and reveals its unique mechanism in promoting proliferation, invasion, and metastasis via the JAK/STAT signaling pathway. LINC00115 is significantly upregulated in EC tissues and closely associated with advanced TNM staging and lymph node metastasis. Functional assays showed that knockdown of LINC00115 suppressed EC cell proliferation, invasion, and metastasis, while overexpression enhanced these malignant behaviors.

View Article and Find Full Text PDF

Therapies against hematological malignancies using chimeric antigen receptors (CAR)-T cells have shown great potential; however, therapeutic success in solid tumors has been constrained due to limited tumor trafficking and infiltration, as well as the scarcity of cancer-specific solid tumor antigens. Therefore, the enrichment of tumor-antigen specific CAR-T cells in the desired region is critical for improving therapy efficacy and reducing systemic on-target/off-tumor side effects. Here, we functionalized human CAR-T cells with superparamagnetic iron oxide nanoparticles (SPIONs), making them magnetically controllable for site-directed targeting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!