Subverting bradykinin-evoked inflammation by co-opting the contact system: lessons from survival strategies of Trypanosoma cruzi.

Curr Opin Hematol

Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Center of Health Sciences (CCS), Cidade Universitária, Rio de Janeiro, Brazil.

Published: September 2018

Purpose Of Review: During Chagas disease, Trypanosoma cruzi alternates between intracellular and extracellular developmental forms. After presenting an overview about the roles of the contact system in immunity, I will review experimental studies showing that activation of the kallikrein-kinin system (KKS) translates into mutual benefits to the host/parasite relationship.

Recent Findings: T. cruzi trypomastigotes initiate inflammation by activating tissue-resident innate sentinel cells via the TLR2/CXCR2 pathway. Following neutrophil-evoked microvascular leakage, the parasite's major cysteine protease (cruzipain) cleaves plasma-borne kininogens and complement C5. Tightly regulated by angiotensin-converting enzyme (ACE), kinins and C5a in turn further propagate inflammation via iterative cycles of mast cell degranulation, contact system activation, bradykinin release and activation of endothelial bradykinin B2 receptors (B2R). Recently, studies in the intracardiac model of infection revealed a dichotomic role for bradykinin and endothelin-1: generated upon contact activation (mast cell/KKS pathway), these pro-oedematogenic peptides reciprocally stimulate trypomastigote invasion of heart cells that naturally overexpress B2R and endothelin receptors (ETaR/ETbR).

Summary: Studies focusing on the immunopathogenesis of Chagas disease revealed that the contact system plays a dual role in host/parasite balance: T. cruzi co-opts bradykinin-induced plasma leakage as a strategy to increment heart parasitism and increase immune resistance by upregulating type-1 effector T-cell production in secondary lymphoid tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1097/MOH.0000000000000444DOI Listing

Publication Analysis

Top Keywords

contact system
16
trypanosoma cruzi
8
chagas disease
8
contact
5
system
5
subverting bradykinin-evoked
4
bradykinin-evoked inflammation
4
inflammation co-opting
4
co-opting contact
4
system lessons
4

Similar Publications

Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.

View Article and Find Full Text PDF

Soilscapes from Byers Peninsula, Maritime Antarctic: landform-lithology controls in soil formation.

An Acad Bras Cienc

January 2025

Universidade Federal de Viçosa - UFV, Departmento de Solos, Av. Peter Henry Rolfs, s/nº, Campus Universitário Viçosa, 36570-900 Viçosa, MG, Brazil.

The Byers Peninsula, the largest ice-free area in Maritime Antarctica, is vital for studying landscape-scale natural processes due to its diverse periglacial landforms. This study aim to characterize the soils and environments of its southern sector, focusing on soil-landform-lithology interactions. Thirty-seven soil profiles were classified, collected, and chemically and physically analyzed.

View Article and Find Full Text PDF

The transmission bottleneck, defined as the number of viruses shed from one host to infect another, is an important determinant of the rate of virus evolution and the level of immunity required to protect against virus transmission. Despite its importance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission bottleneck remains poorly characterized. We adapted a SARS-CoV-2 reverse genetics system to generate a pool of >200 isogenic SARS-CoV-2 viruses harboring specific 6-nucleotide barcodes, infected donor hamsters with this pool, and exposed contact hamsters to paired infected donors, varying the duration and route of exposure.

View Article and Find Full Text PDF

Numerous studies have highlighted bottom-contact fishing gears as the primary threat to vulnerable marine ecosystems (VMEs). In November 2022, the European Commission closed 87 VME protection polygons to bottom fishing in European waters. Using public automatic identification system (AIS) data, we found an 81% decrease in bottom-contact fishing effort within these areas in the year following the closures.

View Article and Find Full Text PDF

Soil microbiome bacteria protect plants against filamentous fungal infections via intercellular contacts.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, Key Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.

Bacterial-fungal interaction (BFI) has significant implications for the health of host plants. While the diffusible antibiotic metabolite-mediated competition in BFI has been extensively characterized, the impact of intercellular contact remains largely elusive. Here, we demonstrate that the intercellular contact is a prevalent mode of interaction between beneficial soil bacteria and pathogenic filamentous fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!