This paper presents a wearable sensor architecture for frequency-multiplexed electrical impedance tomography (EIT) and synchronous multilead electrocardiogram (ECG) data acquisition. The system is based on a novel electronic sensing architecture, called cooperative sensors, that significantly reduces the cabling complexity and enables flexible EIT stimulation and measurement patterns. The cooperative-sensor architecture was initially designed for ECG and has been extended for multichannel bioimpedance measurement. This approach allows for an adjustable EIT stimulation pattern via frequency-division multiplexing. This paper also shows a calibration procedure as well as EIT system noise performance assessment. Preliminary measurements on a healthy volunteer showed the ability of the wearable system to measure EIT data synchronously with multilead ECG. Ventilation-related and heartbeat-related EIT images were reconstructed, demonstrating the feasibility of the proposed architecture for noninvasive cardiovascular monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TBME.2018.2857199 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!