Out of equilibrium phenomena are a major issue of modern physics. In particular, correlated materials such as Mott insulators experience fascinating long-lived exotic states under a strong electric field. Yet, the origin of their destabilization by the electric field is not elucidated. Here we present a comprehensive study of the electrical response of canonical Mott insulators GaM_{4}Q_{8} (M=V, Nb, Ta, Mo; Q=S, Se) in the context of a microscopic theory of electrical breakdown where in-gap states allow for a description in terms of a two-temperature model. Our results show how the nonlinearities and the resistive transition originate from a massive creation of hot electrons under an electric field. These results give new insights for the control of the long-lived states reached under an electric field in these systems which has recently open the way to new functionalities used in neuromorphic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.121.016601 | DOI Listing |
Plant Methods
January 2025
School of Electronic and Information Engineering, Liaoning Technical University, Huludao, 125105, China.
Apricot trees, serving as critical agricultural resources, hold a significant role within the agricultural domain. Conventional methods for detecting pests and diseases in these trees are notably labor-intensive. Many conditions affecting apricot trees manifest distinct visual symptoms that are ideally suited for precise identification and classification via deep learning techniques.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Electrical Engineering, ESAT-STADIUS, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.
Background: Waste and fraud are important problems for health insurers to deal with. With the advent of big data, these insurers are looking more and more towards data mining and machine learning methods to help in detecting waste and fraud. However, labeled data is costly and difficult to acquire as it requires expert investigators and known care providers with atypical behavior.
View Article and Find Full Text PDFBiomed Microdevices
January 2025
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.
View Article and Find Full Text PDFSci Rep
January 2025
Spectroscopy Department, National Research Centre, El Buhouth St., Dokki, Giza, 12622, Egypt.
Due to the high cost of raw materials, this work aims to benefit from metal waste, especially iron (Fe) and silicon bronze, which results from turning workshops and recycling them to obtain nanocomposites for industrial applications. In this respect, Fe/SiBr/SiN/silica fume nanocomposites possessing superior mechanical, wear, and magnetic characteristics have been produced using powder metallurgy (PM) technology. Milled sample particle size, crystal size, and phase composition were investigated using X-ray diffraction (XRD) technique and transmission electron microscopy (TEM).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, College of Engineering, King Khalid University, P.O. Box 394, 61421, Abha, KSA, Saudi Arabia.
The direct power control (DPC) algorithm is one of the most popular linear techniques used to implement notable controllers, known for their simplicity and fast dynamic response. However, this approach has drawbacks that cause a decrease in the current quality and disturbances in the network. Therefore, this experimental work presents a simple and efficient solution that uses a proportional-integral regulator based on a genetic algorithm to regulate the power quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!