Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered Correlators.

Phys Rev Lett

Department of Theoretical Physics and MTA-BME Lendület Topology and Correlation Research Group, Budapest University of Technology and Economics, 1521 Budapest, Hungary.

Published: July 2018

Out-of-time-ordered (OTO) correlators have developed into a central concept quantifying quantum information transport, information scrambling, and quantum chaos. In this Letter, we show that such an OTO correlator can also be used to dynamically detect equilibrium as well as nonequilibrium phase transitions in Ising chains. We study OTO correlators of an order parameter both in equilibrium and after a quantum quench for different variants of transverse-field Ising models in one dimension, including the integrable one as well as nonintegrable and long-range extensions. We find for all the studied models that the OTO correlator in ground states detects the quantum phase transition. After a quantum quench from a fully polarized state, we observe numerically for the short-range models that the asymptotic long-time value of the OTO correlator signals still the equilibrium critical points and ordered phases. For the long-range extension, the OTO correlator instead determines a dynamical quantum phase transition in the model. We discuss how our findings can be observed in current experiments of trapped ions or Rydberg atoms.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.121.016801DOI Listing

Publication Analysis

Top Keywords

oto correlator
16
quantum phase
12
dynamical quantum
8
phase transitions
8
transitions ising
8
ising chains
8
oto correlators
8
quantum quench
8
phase transition
8
quantum
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!