Small molecules discovered during the recent years can be used to regulate the growth of embryonic stem cells (ES cells). Chicken blastodermal cells (cBCs) play an important role in both basic and transgenic researches as an important ES cell. However, the regulatory mechanism of small molecules involved in the self-renewal and pluripotency of cBCs remains unknown. This study revealed that the small molecule, SC1, can maintain cBCs in an undifferentiated, pluripotent state in serum- and feeder-free E8 media without leukaemia inhibitory factor. Furthermore, SC1 inhibits downregulation of pluripotency-related genes caused by retinoic acid and promotes the proliferation of cBCs. Furthermore, the results of this study indicated that SC1 functions by inhibiting ERK1 phosphorylation and promoting Akt phosphorylation, thus promoting the expression of pluripotency-related genes and maintaining the pluripotency of cBCs. The results also demonstrated that SC1 sustains the self-renewal capacity and pluripotency of cBCs cells by inhibiting ERK1 phosphorylation and promoting Akt phosphorylation. This kind of regulatory mechanism might be conserved in avian ES cells. Other molecules, similar to SC1, might provide insights into the molecular mechanisms that control the fate of stem cells and ultimately help in-vivo stem cell biology and therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/rda.13202DOI Listing

Publication Analysis

Top Keywords

pluripotency cbcs
12
phosphorylation promoting
12
sc1 sustains
8
sustains self-renewal
8
self-renewal capacity
8
capacity pluripotency
8
chicken blastodermal
8
blastodermal cells
8
cells inhibiting
8
small molecules
8

Similar Publications

Ascorbic acid and all-trans retinoic acid promote proliferation of chicken blastoderm cells (cBCs) by mediating DNA demethylation.

In Vitro Cell Dev Biol Anim

March 2022

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing, 210095, Jiangsu Province, People's Republic of China.

Chicken blastoderm cells (cBCs) obtained from stage X (EG&K) embryos are easily available materials for the study of cell development. However, cBCs are not widely used because they are hard to maintain in long-term culture in vitro. To solve this problem, ascorbic acid (AA; also known as vitamin C (VC)) and all-trans retinoic acid (ATRA) were added into basic culture medium to promote cell growth.

View Article and Find Full Text PDF

Small molecules discovered during the recent years can be used to regulate the growth of embryonic stem cells (ES cells). Chicken blastodermal cells (cBCs) play an important role in both basic and transgenic researches as an important ES cell. However, the regulatory mechanism of small molecules involved in the self-renewal and pluripotency of cBCs remains unknown.

View Article and Find Full Text PDF

Background: Producing transgenic chickens with chicken blastodermal cells (cBCs) is inefficient due to the extremely low germline transmission capacity of cBCs. As chicken primordial germ cells (PGCs) have been reported as an efficient method for producing transgenic chickens, the inefficiency of cBCs could potentially be resolved by inducing them to differentiate into germ cells. However, whether chemical inducers are able to enhance cBCs germline competence in vitro is unknown and the molecular mechanisms of differentiation of chicken pluripotent cells into germ cells are poorly understood.

View Article and Find Full Text PDF

Chicken embryonic stem cells as a non-mammalian embryonic stem cell model.

Dev Growth Differ

January 2010

Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, ENS Lyon, CNRS, UMR5242, INRA, UMR1288, F-69007 Lyon.

Embryonic stem cells (ESCs) were isolated in the early 1980s from mouse and in the late 1990s from primate and human. These cells present the unique property of self-renewal and the ability to generate differentiated progeny in all embryonic lineages both in vitro and in vivo. The mESCs (mouse embryonic stem cells) can contribute to both somatic and germinal lineages once re-injected into a recipient embryo at the blastocyst stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!