A novel oxide material with the formula of Sc2W4O15 and orthorhombic symmetry is synthesized by solid state reactions and its structure, composition, vibrational properties and thermal expansion are investigated and identified by temperature-dependent X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray photoelectron spectrometry (XPS) and dilatometry. It is shown that the oxide material with an orthorhombic symmetry shows a similar structure to that of Sc2W3O12, but with W partially occupying the position of Sc, leading to not only the corner-sharing ScO6-WO4 connections but also the corner-sharing WO6-WO4 connections. Raman spectroscopic studies show that compared to Sc2W3O12, the FWHMs of most Raman modes in Sc2W4O15 increase due to the occupation of W6+ in the Sc3+ position. Besides, the W-O bonds in Sc2W4O15 are slightly harder than those in Sc2W3O12. An intrinsic thermal contraction in a wide range of temperatures (93-572 K) is demonstrated, which is attributed to the librational and translational vibrations of the corner-sharing polyhedra as well as the transverse vibrations of the bridging O atoms in the Sc-O-W and W-O-W linkages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp02403k | DOI Listing |
Electromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina 27607, United States.
Albeit there is widespread application of thermally conductive polymer composites, one challenge is their typical negative temperature dependence on thermal conductivity (TDTC) due to the mismatch in thermal expansion between the polymer and fillers, creating voids at the interfaces. Inspired by the hierarchical structure of snakeskin, where rigid scales and a soft intergap manage expansion, we designed a segregated structure by coating a high-expansion high impact polystyrene (HIPS)/graphite (Gt) composite with a copper alloy. We hypothesize that the Cu alloy restricts the thermal expansion of HIPS/Gt while forming a pseudoconductive network, enhancing TDTC and thermal conductivity (TC).
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Earth and Environmental Sciences and Engineering, Institute of Exploration Geosciences, University of Miskolc, Miskolc, Hungary.
The growing demand for clean and sustainable energy sources has prompted the investigation of numerous renewable and ecologically friendly options. Among these, geothermal energy is particularly noteworthy because of its widespread availability, compact size, and consistent, weather-independent power production. A geothermal play fairway analysis (GPFA) model was created for the study area, which is located in Békés county, southeastern Hungary.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
Negative thermal expansion is known to exist in a range of structure types but is extremely rare in hexagonal perovskites. Here we demonstrate that BaIrO displays negative linear thermal expansion in the direction of its face-shared IrO trimers, and apparent zero volume thermal expansion below 100 K. We present evidence that this anomalous thermal expansion is driven by an unusual form of rigid body phonon behaviour governed by the effective trimer valence state and therefore has structural and electronic components to the underlying mechanism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Stanford University, Stanford, CA 94305.
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in , a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!